Graphons, mergeons, and so on!

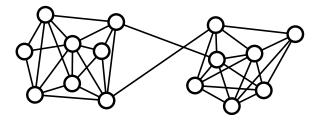
Justin Eldridge

with Mikhail Belkin, Yusu Wang

THE OHIO STATE UNIVERSITY

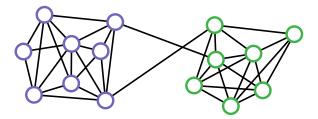
▲ロ▶▲掃▶▲ヨ▶▲ヨ▶ ヨーのQ@

Graph clustering

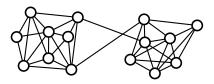


◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

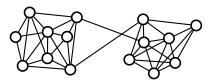
Graph clustering



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○



What is the "correct" clustering of the graph?

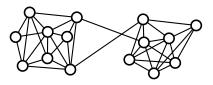


◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへで

Question 1

What is the "correct" clustering of the graph?

There is no single answer.

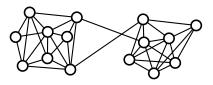


◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Question 1

What is the "correct" clustering of the graph?

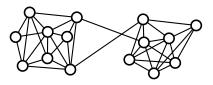
- There is no single answer.
- Right answer depends on nature of the data.



What is the "correct" clustering of the graph?

- There is no single answer.
- Right answer depends on nature of the data.
- When graph generated from a random graph model...

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

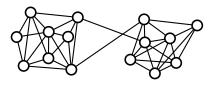


What is the "correct" clustering of the graph?

- There is no single answer.
- Right answer depends on nature of the data.
- When graph generated from a random graph model...

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

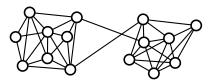
Define the clusters of the model itself.



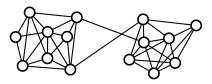
What is the "correct" clustering of the graph?

- There is no single answer.
- Right answer depends on nature of the data.
- When graph generated from a random graph model...
- Define the clusters of the model itself.
- Goal of clustering: recover the clusters of the model from a single graph.

・ロ・・ 中・・ ヨ・・ 日・ うくつ



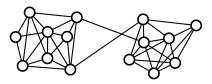
What does it mean to recover the "correct" clustering?



What does it mean to recover the "correct" clustering?

Need a notion of statistical consistency for the clusters of the random graph model.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

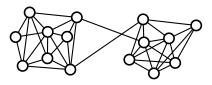


What does it mean to recover the "correct" clustering?

Need a notion of statistical consistency for the clusters of the random graph model.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Question 3 How do we recover the correct clustering?



What does it mean to recover the "correct" clustering?

Need a notion of statistical consistency for the clusters of the random graph model.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Question 3

How do we recover the correct clustering?

Do correct algorithms exist?

We assume a very general and powerful random graph model called a graphon.

We assume a very general and powerful random graph model called a graphon.

Question 1: What is the "correct" clustering of a graphon?

- We introduce the graphon cluster tree.
- Introduce a useful encoding which we call a mergeon.

We assume a very general and powerful random graph model called a graphon.

Question 1: What is the "correct" clustering of a graphon?

- We introduce the graphon cluster tree.
- Introduce a useful encoding which we call a mergeon.

Question 2: What does it mean to recover the "correct" clustering?

We develop a notion of statistical consistency for the graphon cluster tree using the mergeon.

We assume a very general and powerful random graph model called a graphon.

Question 1: What is the "correct" clustering of a graphon?

- We introduce the graphon cluster tree.
- Introduce a useful encoding which we call a mergeon.

Question 2: What does it mean to recover the "correct" clustering?

We develop a notion of statistical consistency for the graphon cluster tree using the mergeon.

Question 3: How do we recover the graphon cluster tree?

We give sufficient conditions under which a graphon estimator leads to a correct clustering method.

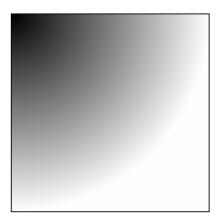
ション (日本) (日本) (日本) (日本) (日本)

We identify a practical, correct clustering algorithm.

What is a graphon?

A graphon is a symmetric, measurable function $W : [0, 1]^2 \rightarrow [0, 1]$.

▶ Intuitively: the weight matrix of a graph on node set [0, 1].

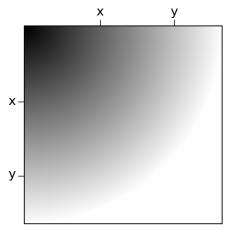


・ロ・・ 中・・ ヨ・・ 日・ うくつ

What is a graphon?

A graphon is a symmetric, measurable function $W : [0, 1]^2 \rightarrow [0, 1]$.

▶ Intuitively: the weight matrix of a graph on node set [0, 1].



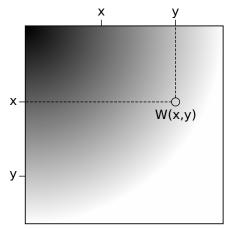
A graphon's "nodes" are points in [0, 1].

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

What is a graphon?

A graphon is a symmetric, measurable function $W : [0, 1]^2 \rightarrow [0, 1]$.

▶ Intuitively: the weight matrix of a graph on node set [0, 1].



The weight of the "edge" (x, y) is W(x, y).

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Large networks and graph limits

László Lovász

Contents

Preface	xi
Part 1. Large graphs: an informal introduction	1
Chapter 1. Very large networks	3
1.1. Huge networks everywhere	3
1.2. What to ask about them?	4
1.3. How to obtain information about them?	5
1.4. How to model them?	8
1.5. How to approximate them?	11
1.6. How to run algorithms on them?	18
1.7. Bounded degree graphs	22
Chapter 2. Large graphs in mathematics and physics	25
2.1. Extremal graph theory	25
2.2. Statistical physics	32
Part 2. The algebra of graph homomorphisms	35
Chapter 3. Notation and terminology	37
3.1. Basic notation	37
3.2. Graph theory	38
3.3. Operations on graphs	39
Chapter 4. Graph parameters and connection matrices	41
4.1. Graph parameters and graph properties	-41
4.2. Connection matrices	42
4.3. Finite connection rank	45
Chapter 5. Graph homomorphisms	55
5.1. Existence of homomorphisms	55
5.2. Homomorphism numbers	56
5.3. What hom functions can express	62
5.4. Homomorphism and isomorphism	68
5.5. Independence of homomorphism functions	72
5.6. Characterizing homomorphism numbers	75
5.7. The structure of the homomorphism set	79
Chapter 6. Graph algebras and homomorphism functions	83
6.1. Algebras of quantum graphs	83
6.2. Reflection positivity	88

◆□ → < 団 → < 三 → < 三 → ○ < ○ </p>

Large networks and graph limits

László Lovász

*111	CONTENTS	
6.3.	Contractors and connectors	94
6.4.	Algebras for homomorphism functions	101
	Computing parameters with finite connection rank	106
6.6.	The polynomial method	108
Part 3	. Limits of dense graph sequences	113
Chapte	r 7. Kernels and graphons	115
	Kernels, graphons and stepfunctions	115
	Generalizing homomorphisms	116
7.3.	Weak isomorphism I	121
7.4.	Sums and products	122
7.5.	Kernel operators	124
Chapte	r 8. The cut distance	127
8.1.	The cut distance of graphs	127
8.2.	Cut norm and cut distance of kernels	131
8.3.	Weak and L ₁ -topologies	138
	r 9. Szemerédi partitions	141
	Regularity Lemma for graphs	141
	Regularity Lemma for kernels	144
	Compactness of the graphon space	149
	Fractional and integral overlays	151
9.5.	Uniqueness of regularity partitions	154
	r 10. Sampling	157
	. W-random graphs	157
	Sample concentration	158
10.3		160
	. The distance of a sample from the original	164
10.5		167
10.6	. Inverse Counting Lemma . Weak isomorphism II	169 170
10.7	. Weak isomorphism II	170
	r 11. Convergence of dense graph sequences	173
	. Sampling, homomorphism densities and cut distance	173
11.2		174
11.3	. The limit graphon	180
		185
	Many disguises of graph limits	193
11.6		194
11.7		196
	. First applications	
Chapte	r 12. Convergence from the right	201
	Homomorphisms to the right and multicuts	201
	. The overlay functional	205
12.3		207
12.4	. rught-convergent graph sequences	211

Large networks and graph limits

László Lovász

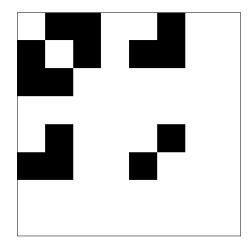
CONTENTS	in .
Chapter 13. On the structure of graphons	217
13.1. The general form of a graphon	217
13.2. Weak isomorphism III	220
13.3. Pure kernels	222
13.4. The topology of a graphon	225
13.5. Symmetries of graphons	234
Chapter 14. The space of graphons	239
14.1. Norms defined by graphs	239
14.2. Other norms on the kernel space	242
14.3. Closures of graph properties	247
14.4. Graphon varieties	250
14.5. Random graphons	256
14.6. Exponential random graph models	259
Chapter 15. Algorithms for large graphs and graphons	263
15.1. Parameter estimation	263
15.2. Distinguishing graph properties	266
15.3. Property testing	268
15.4. Computable structures	276
Chapter 16. Extremal theory of dense graphs	281
16.1. Nonnegativity of quantum graphs and reflection positivity	281
16.2. Variational calculus of graphons	283
16.3. Densities of complete graphs	285
16.4. The classical theory of extremal graphs	293
Local vs. global optima	294
16.6. Deciding inequalities between subgraph densities	299
16.7. Which graphs are extremal?	307
Chapter 17. Multigraphs and decorated graphs	317
17.1. Compact decorated graphs	318
17.2. Multigraphs with unbounded edge multiplicities	325
Part 4. Limits of bounded degree graphs	327
Chapter 18. Graphings	329
18.1. Borel graphs	329
18.2. Measure preserving graphs	332
18.3. Random rooted graphs	338
18.4. Subgraph densities in graphings	344
18.5. Local equivalence	346
18.6. Graphings and groups	349
Chapter 19. Convergence of bounded degree graphs	351
19.1. Local convergence and limit	351
19.2. Local-global convergence	360
Chapter 20. Right convergence of bounded degree graphs	367
20.1. Random homomorphisms to the right	367
20.2. Convergence from the right	375

Large networks and graph limits

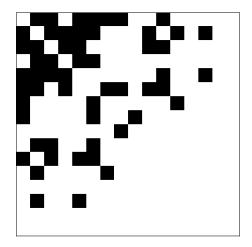
László Lovász

ĸ	CONTENTS	
	21. On the structure of graphings Hyperfiniteness Homogeneous decomposition	383 383 393
22.1.	22. Algorithms for bounded degree graphs Estimable parameters Testable properties Computable structures	397 397 402 405
Part 5.	Extensions: a brief survey	413
23.1. 23.2. 23.3. 23.4.	23. Other combinatorial structures Sparse (but not very sparse) graphs Edge-coloring models Hypergraphs Categories And more	415 415 416 421 425 429
A.1. A.2. A.3. A.4. A.5. A.6. A.7. A.8.		$\begin{array}{c} 433\\ 433\\ 434\\ 436\\ 441\\ 444\\ 445\\ 446\\ 446\\ 447\end{array}$
Bibliogr	sphy	451
Author	Index	465
Subject	Index	469
Notation	Index	473

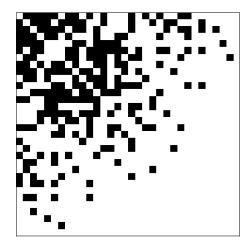
◆□ → < 団 → < 三 → < 三 → ○ < ○ </p>



<□> <圖> < => < => < => < => <</p>



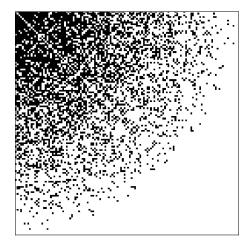
◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 - の々で



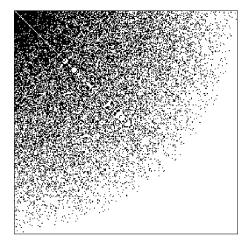
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々で



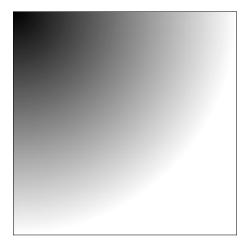
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

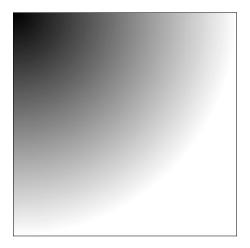


◆□▶▲母▶▲臣▶▲臣▶ 臣 のぐの



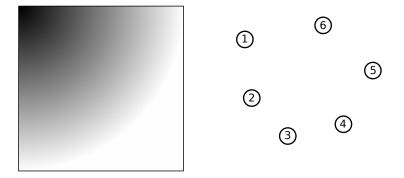
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

A graphon is a random graph model.

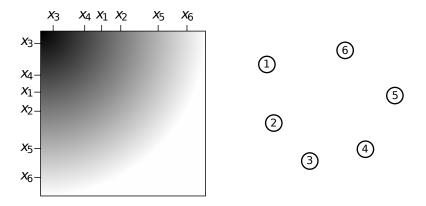


When W(x, y) is interpreted as a probability.

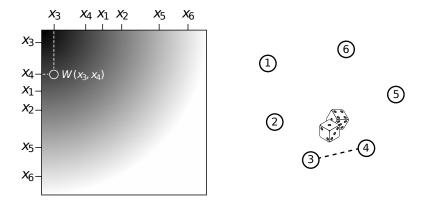
ヘロト 人間 ト 人 ヨト 人 ヨトー



Start with a graph with integer node set [n].

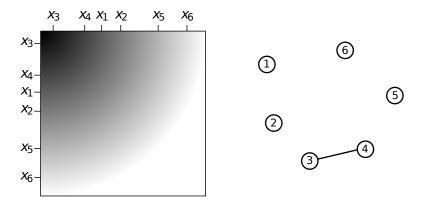


Draw n points $\{x_1, \ldots, x_n\}$ from Unif([0, 1]).



Connect nodes 3 and 4 with probability $W(x_3, x_4)$.

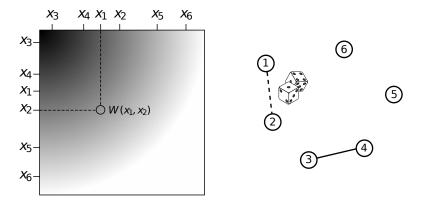
▲□▶ ▲圖▶ ▲目▶ ▲目▶ 三目 - のへで



By chance, edge (3, 4) is included.

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 三目 - のへで

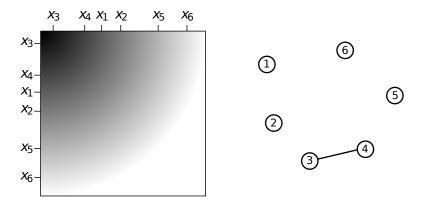
Sampling from a graphon



Connect nodes 1 and 2 with probability $W(x_1, x_2)$.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 – のへで

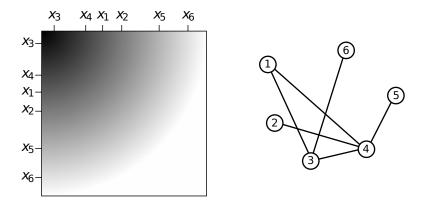
Sampling from a graphon



By chance, edge (1, 2) is omitted.

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 三目 - のへで

Sampling from a graphon



Repeat for all edges, resulting in a randomly-generated graph.

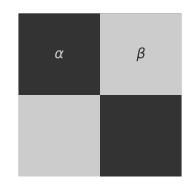
▲□▶ ▲圖▶ ▲目▶ ▲目▶ 三目 - のへで

The stochastic blockmodel

Much theory of graph clustering assumes a stochastic blockmodel. Example:

- Randomly assign each of n nodes to one of two communities.
- Add edge between two nodes with probability:
 - α, if in the same community,
 - β, otherwise.

This is a special case of a graphon.



・ロ・・ 中・・ ヨ・・ 日・ うくつ

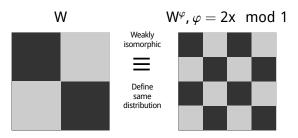
Equivalent graphons

- Any graphon W defines a distribution on graphs.
- Not uniquely! Many graphons define the same distribution.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Equivalent graphons

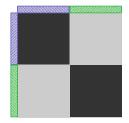
- Any graphon W defines a distribution on graphs.
- ▶ Not uniquely! Many graphons define the same distribution.
- Graphs are isomorphic if they are equivalent up to relabeling.
- ► Graphons are weakly isomorphic if they are equivalent up to a relabeling φ : [0, 1] \rightarrow [0, 1].
 - φ must be measure preserving.
- An equivalence class of graphons under weak isomorphism uniquely defines distribution.

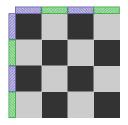


◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ の ○ ○

Question 1: What are the clusters of a graphon?

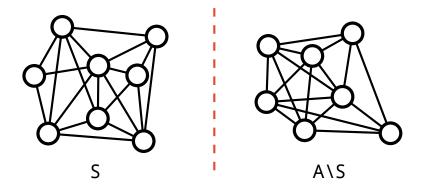
- It is natural to define clusters in terms of connected components.
- Carefully define connectivity for graphons.
- Intuitively: blockmodel graphon should have the two clusters shown.
- Clusters should be:
 - robust to changes to W on a set of zero measure,
 - preserved under relabeling of W.





◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

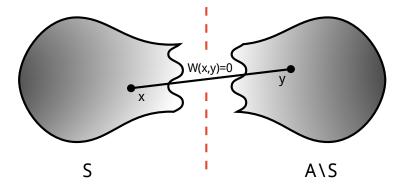
Connectedness in graphs



A is disconnected if it can be partitioned into S and A $\$ S with no crossing edge. Otherwise it is connected.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

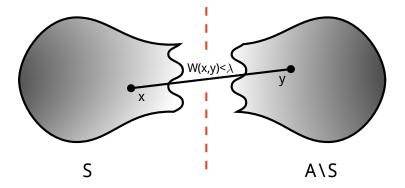
Connectedness in graphons



(Janson, 2008): A is disconnected if it can be partitioned into S and A $\ S$ such that the weight of almost every crossing edge is zero. Otherwise it is connected.

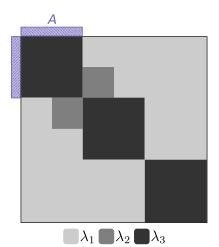
・ロト ・ 同ト ・ ヨト ・ ヨト

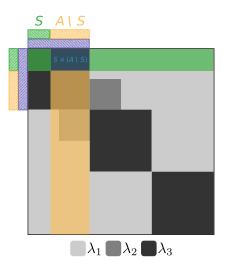
Connectedness in graphons

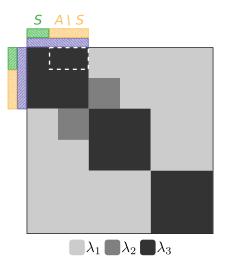


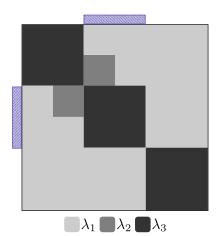
A is disconnected at level λ if it can be partitioned into S and A \ S such that the weight of almost every crossing edge is less than λ . Otherwise it is connected at level λ .

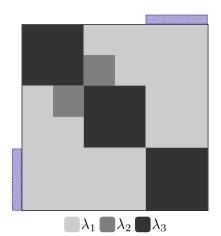
・ロト ・ 同ト ・ ヨト ・ ヨト

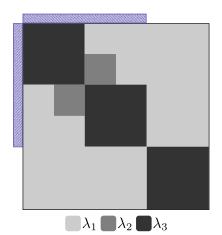


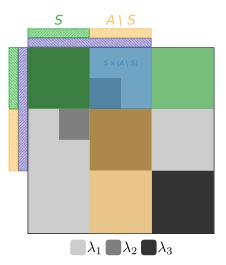


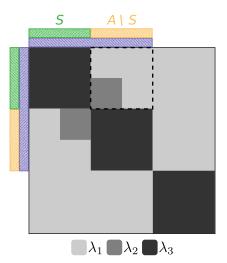


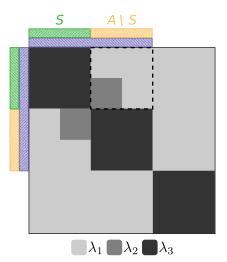




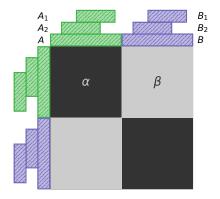








Naturally define clusters in terms of maximally connected sets:

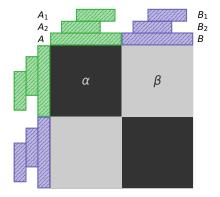


イロト イポト イヨト

32

Naturally define clusters in terms of maximally connected sets:

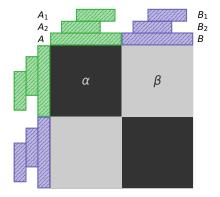
 A set of nodes should be in a cluster at level λ if it is connected at level λ.



◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Naturally define clusters in terms of maximally connected sets:

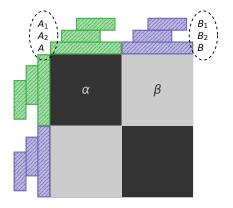
A set of nodes should be in a cluster at level λ if it is connected at level λ it is connected at all λ' < λ.



◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Naturally define clusters in terms of maximally connected sets:

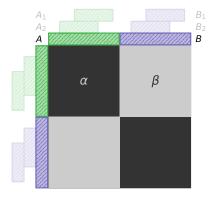
- A set of nodes should be in a cluster at level λ if it is connected at level λ it is connected at all λ' < λ.
- 2. Group the sets which should be in the same cluster.



(日) (四) (王) (日) (日) (日)

Naturally define clusters in terms of maximally connected sets:

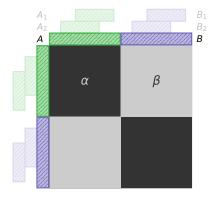
- A set of nodes should be in a cluster at level λ if it is connected at level λ it is connected at all λ' < λ.
- 2. Group the sets which should be in the same cluster.
- Define clusters to be the "largest" elements of each group.



・ロ・・ 中・・ ヨ・・ 日・ うくつ

Naturally define clusters in terms of maximally connected sets:

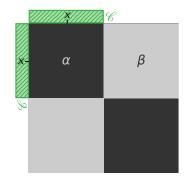
- A set of nodes should be in a cluster at level λ if it is connected at level λ it is connected at all λ' < λ.
- 2. Group the sets which should be in the same cluster.
- Define clusters to be the "largest" elements of each group.



We write $\mathbb{C}_{W}(\lambda)$ to denote the set of clusters of W at level λ .

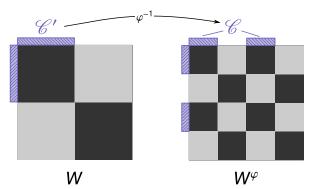
Properties of clusters

- Connectivity of a set is not changed by adding/removing sets of zero measure.
- ► Careful! A cluster $\mathscr{C} \in \mathbb{C}_W(\lambda)$ is not a subset of [0, 1]!
 - It is an equivalence class of subsets equal up to null sets.
 - A single point $x \in [0, 1]$ belongs to no cluster in particular.



Properties of clusters

- Claim: Clusters are preserved under relabelings.
- ► I.e., the clusters of a graphon W and the clusters of its relabeling W^φ are in bijection.
 - Surprisingly non-trivial to show due to graphon subtleties.
- Example: $\varphi(x) = 2x \mod 1$



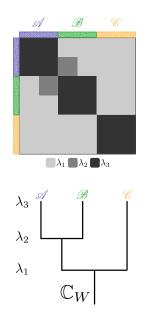
・ロ・・ 中・・ ヨ・・ 日・ うくつ

The graphon cluster tree

- The set of clusters C_W from all levels has hierarchical structure.
 - ► I.e., if C and C' are clusters, then either μ (C \cap C') = 0, μ (C \setminus C') = 0, or μ (C' \setminus C) = 0.
- We call \mathbb{C}_W the graphon cluster tree of W.
- Claim: If two graphons are equivalent, their cluster trees are isomorphic.

The goal of clustering (graphon setting)

- Given a graph sampled from W...
- recover the cluster tree of W.

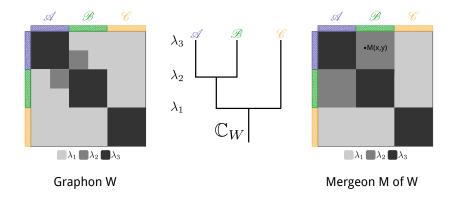


・ロト ・ 何ト ・ ヨト ・ ヨト

-

Mergeons

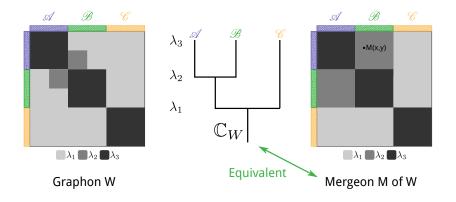
- We may naturally speak of the height at which clusters merge.
- But the merge height of any pair of nodes is undefined.
- Encode particular choice of merge heights with a mergeon.

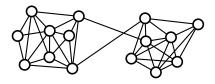


◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Mergeons

- We may naturally speak of the height at which clusters merge.
- But the merge height of any pair of nodes is undefined.
- Encode particular choice of merge heights with a mergeon.



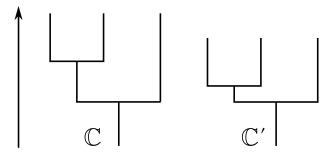


Question 1: What is the "correct" clustering of a graphon? Answer: The mergeon or, equivalently, the graphon cluster tree.

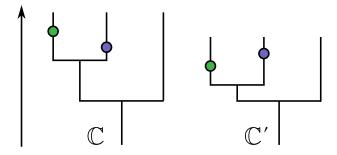
Question 2: What does it mean to recover the "correct" clustering?

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ の ○ ○

Question 3: How do we recover the correct clustering?

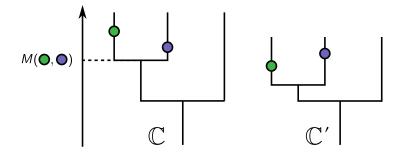


How "close" are $\mathbb C$ and $\mathbb C'?$



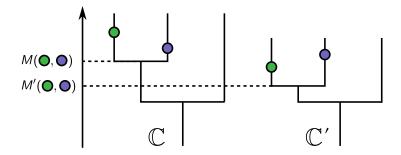
How "close" are \mathbb{C} and \mathbb{C} ? Compare merge heights using mergeons.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○



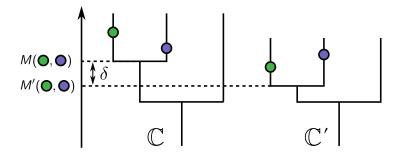
How "close" are \mathbb{C} and \mathbb{C} ? Compare merge heights using mergeons.

・ロト ・ 同ト ・ ヨト ・ ヨト



How "close" are \mathbb{C} and \mathbb{C} ? Compare merge heights using mergeons.

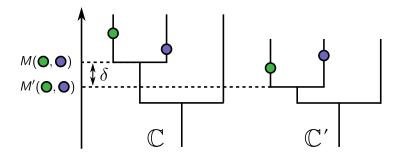
◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○



How "close" are \mathbb{C} and \mathbb{C} ? Compare merge heights using mergeons.

・ロト ・ 同ト ・ ヨト ・ ヨト

The merge distortion



The merge distortion between $\mathbb C$ and $\mathbb C'$ with respect to a (finite) set S is:

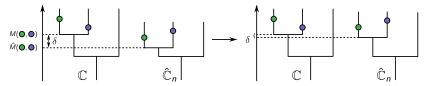
$$d_{S}(\mathbb{C},\mathbb{C}') = \max_{s_{1}\neq s_{2}\in S} \left| \mathsf{M}(s_{1},s_{2}) - \mathsf{M}'(s_{1},s_{2}) \right|.$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Convergence in merge distortion

Definition

A sequence $\hat{\mathbb{C}}_n$ converges in merge distortion to \mathbb{C} if $d(\mathbb{C}, \hat{\mathbb{C}}_n) \to 0$ as $n \to \infty$.



(日)

Consistent clustering methods

Question 2

What does it mean to recover the "correct" clustering?

A clustering method is consistent for the graphon W if its output converges in merge distortion to C_W, w.h.p. as n → ∞.

Consistent clustering methods

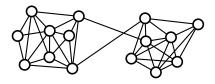
Question 2

What does it mean to recover the "correct" clustering?

- A clustering method is consistent for the graphon W if its output converges in merge distortion to C_W, w.h.p. as n → ∞.
- That is:
 - ▶ If G_n is a random graph of size n sampled from W,
 - $\hat{\mathbb{C}}_{G_n}$ is the output of the method given G_n as input,
 - ▶ then, for any fixed $\epsilon > 0$, $\mathbb{P}(d(\mathbb{C}_W, \hat{\mathbb{C}}_{G_n}) > \epsilon) \rightarrow 0$ as $n \rightarrow \infty$.

・ロ・・ 日・・ ヨ・・ 日・ うくつ

Consistent methods recover the clusters of the graphon.



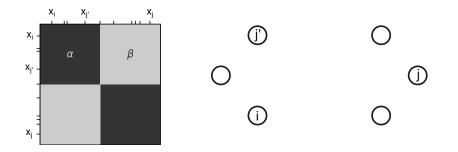
Question 1: What is the "correct" clustering of a graphon? Answer: The graphon cluster tree or, equivalently, the mergeon.

Question 2: What does it mean to recover the "correct" clustering? Answer: Convergence in merge distortion to graphon cluster tree.

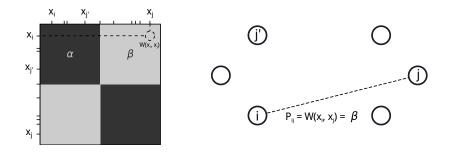
Question 3: How do we recover the correct clustering?

I.e., do algorithms exist which are consistent in merge distortion?

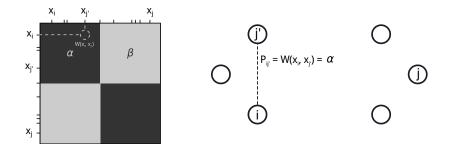
Consider sampling a graph from this graphon.



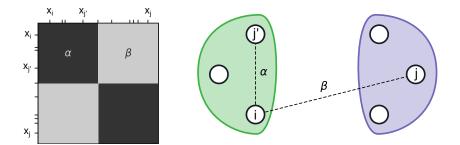
◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで



<□> <圖> < => < => < => < => <</p>

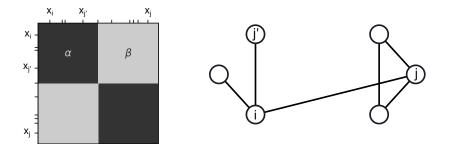


◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 の々で



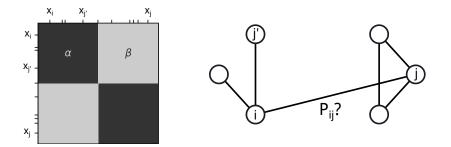
The correct clustering is determined by these edge probabilities.

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●



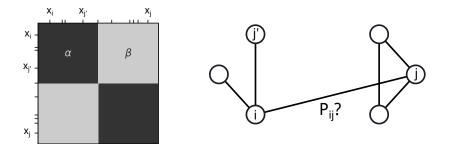
But the edge probabilities are unknown, and the presence of an edge (i, j) tells us little about P_{ij} .

(日)



Goal: Compute estimate P of edge probabilities from single graph.

・ロト ・ 同ト ・ ヨト ・ ヨト



Goal: Compute estimate P of edge probabilities from single graph.

Theorem

If $||P - \hat{P}||_{\infty} \to 0$ in probability as $n \to \infty$, then single linkage clustering on \hat{P} is a consistent clustering method.

▶ To cluster consistently, it is sufficient to estimate P in ∞ -norm.

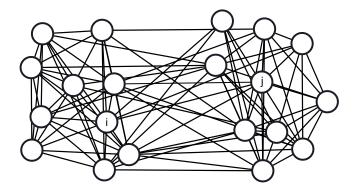
- We now search for such an estimator...
- Zhang et al. (2015) propose neighborhood smoothing.

- To cluster consistently, it is sufficient to estimate P in ∞ -norm.
- We now search for such an estimator...
- Zhang et al. (2015) propose neighborhood smoothing.
- Motivation:
 - ► If we had many observations of random graph: estimate P_{ij} by counting those which contain (i, j).

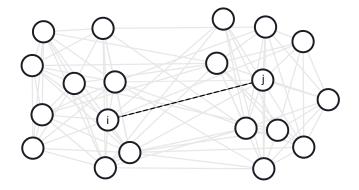
But we have just one observation.

- To cluster consistently, it is sufficient to estimate P in ∞ -norm.
- We now search for such an estimator...
- Zhang et al. (2015) propose neighborhood smoothing.
- Motivation:
 - If we had many observations of random graph: estimate P_{ij} by counting those which contain (i, j).
 - But we have just one observation.
- Approach:
 - For node i, build neighborhood N_i of similar nodes.
 - Think of $i' \in N_i$ as another observation of i.
 - To estimate P_{ij}: count number of edges between j and a node in N_i.

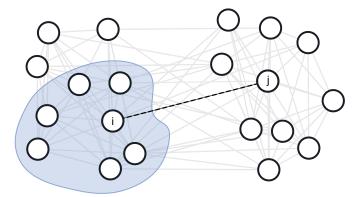
(日本) (日本) (日本) (日本) (日本) (日本) (日本)



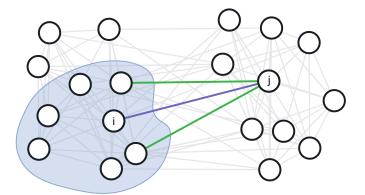
Given this graph...



Given this graph... estimate P_{ij}.



Build a neighborhood N_i of nodes with similar connectivity to that of i. I.e., close in the distance: $d(i, i') = \max_{k \neq i, i'} |(A^2)_{ik} - (A^2)_{i'k}|$.



- Count number of edges from N_i to node j (excluding i): 2.
- Normalize by size of neighborhood: 6.
- Estimated edge probability: $\hat{P}_{ij} = 2/6 = 1/3$.

Consistency of neighborhood smoothing

Zhang et al. (2015) prove that neighborhood smoothing is consistent in mean squared error:

$$\frac{1}{n^2}\|P-\hat{P}\|_F^2 = \frac{1}{n^2}\sum_{ij}(P_{ij}-\hat{P}_{ij})^2 \rightarrow 0 \quad \text{ as } \quad n \rightarrow \infty, \text{ w.h.p.}.$$

- But convergence in this norm is too weak. We need convergence in ∞-norm.
- We modify neighborhood smoothing and analyze.

Consistency of neighborhood smoothing

Zhang et al. (2015) prove that neighborhood smoothing is consistent in mean squared error:

$$\frac{1}{n^2}\|P-\hat{P}\|_F^2 = \frac{1}{n^2}\sum_{ij}(P_{ij}-\hat{P}_{ij})^2 \rightarrow 0 \quad \text{ as } \quad n \rightarrow \infty, \text{ w.h.p.}.$$

- But convergence in this norm is too weak. We need convergence in ∞-norm.
- We modify neighborhood smoothing and analyze.

Theorem

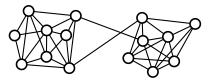
The modified neighborhood smoothing estimator for P is consistent in $\infty\text{-norm}.$

Corollary

Performing single linkage on the modified neighborhood smoothing estimate of P is a consistent graphon clustering method.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

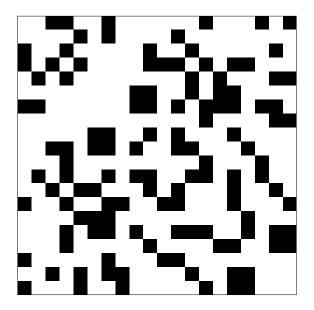
Summary



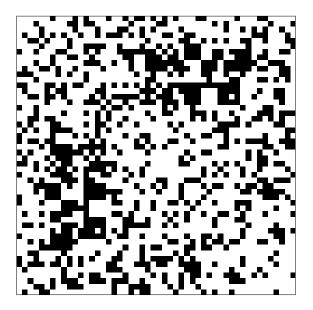
Question 1: What is the "correct" clustering of a graphon? Answer: The graphon cluster tree or, equivalently, the mergeon.

Question 2: What does it mean to recover the "correct" clustering? Answer: Convergence in merge distortion to graphon cluster tree.

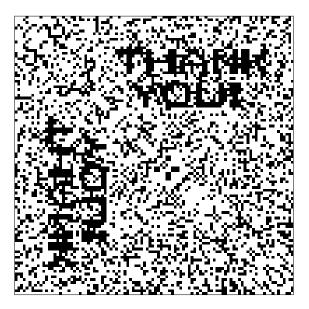
Question 3: How do we recover the correct clustering? Answer: Modified neighborhood smoothing + single linkage clustering.

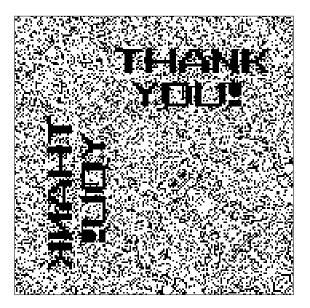


▲□▶▲圖▶▲≧▶▲≧▶ 差 のく⊙









http://web.cse.ohio-state.edu/~eldridge/

◆□▶▲舂▶▲≣▶▲≣▶ ▲□▶

- Any graphon W defines a graph distribution.
- ▶ Not uniquely! Many graphons define the same distribution.
- ► The distribution is uniquely determined up to relabeling of W.

<ロト 4 回 ト 4 三 ト 4 三 ト 三 の Q ()</p>

- Any graphon W defines a graph distribution.
- ► Not uniquely! Many graphons define the same distribution.
- ► The distribution is uniquely determined up to relabeling of W.

・ロ・・ 日・・ ヨ・・ 日・ うくつ

Definition

A measure preserving transformation (i.e., graphon relabeling) $\varphi : [0, 1] \rightarrow [0, 1]$ is a Lebesgue-measurable function whose preimage preserves measure. That is, $\mu(\varphi^{-1}(A)) = \mu(A)$ for all measurable $A \subset [0, 1]$.

Notation: $W^{\varphi}(x, y) = W(\varphi(x), \varphi(y)).$

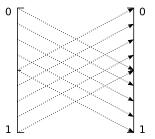
- Any graphon W defines a graph distribution.
- ▶ Not uniquely! Many graphons define the same distribution.
- ► The distribution is uniquely determined up to relabeling of W.

Definition

A measure preserving transformation (i.e., graphon relabeling) $\varphi : [0, 1] \rightarrow [0, 1]$ is a Lebesgue-measurable function whose preimage preserves measure. That is, $\mu(\varphi^{-1}(A)) = \mu(A)$ for all measurable $A \subset [0, 1]$.

Notation: $W^{\varphi}(x, y) = W(\varphi(x), \varphi(y)).$

$$\varphi(\mathbf{X}) = \begin{cases} \mathbf{X} + \frac{1}{2} & \mathbf{X} \le \frac{1}{2}, \\ \mathbf{X} - \frac{1}{2} & \mathbf{X} > \frac{1}{2} \end{cases}$$



白人不同人不同人不同人。

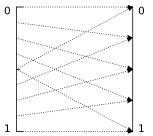
- Any graphon W defines a graph distribution.
- ► Not uniquely! Many graphons define the same distribution.
- ► The distribution is uniquely determined up to relabeling of W.

Definition

A measure preserving transformation (i.e., graphon relabeling) $\varphi : [0, 1] \rightarrow [0, 1]$ is a Lebesgue-measurable function whose preimage preserves measure. That is, $\mu(\varphi^{-1}(A)) = \mu(A)$ for all measurable $A \subset [0, 1]$.

Notation: $W^{\varphi}(x, y) = W(\varphi(x), \varphi(y)).$

$$\varphi(\mathbf{x}) = 2\mathbf{x} \mod 1$$



・ コ ト ・ (目 ト ・ 目 ト ・ 日 ト

Weak isomorphism

Definition (Lovász)

Two graphons W_1 and W_2 are weakly isomorphic if there exist measure preserving transformations φ_1 and φ_2 such that $W_1^{\varphi_1} \stackrel{a.e.}{=} W_2^{\varphi_2}$.

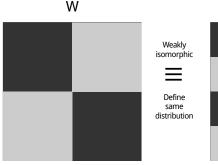
 W₁ and W₂ define the same distribution iff they are weakly isomorphic.

Weak isomorphism

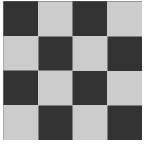
Definition (Lovász)

Two graphons W_1 and W_2 are weakly isomorphic if there exist measure preserving transformations φ_1 and φ_2 such that $W_1^{\varphi_1} \stackrel{a.e.}{=} W_2^{\varphi_2}$.

 W₁ and W₂ define the same distribution iff they are weakly isomorphic.



$$W^{\varphi}$$
, $\varphi = 2x \mod 1$



◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ の ○ ○

The clusters of a graphon

1. Collect all subsets of [0, 1] which should be clustered at λ :

 $\mathfrak{A}_{\lambda} = \{ \mathsf{A} \subset [0, 1] : \mu(\mathsf{A}) > 0 \text{ and } \mathsf{A} \text{ is connected } \forall \lambda' < \lambda \}$

- 2. If $A_1, A_2, A \in \mathfrak{A}_{\lambda}$, and $A_1 \cup A_2 \subset A$, then A_1, A_2 , and A should all be in the same cluster at λ . Consider them equivalent.
 - Define equivalence relation on 𝔄_λ:

$$\mathsf{A}_1 \leadsto_{\lambda} \mathsf{A}_2 \Longleftrightarrow \exists \mathsf{A} \in \mathfrak{A}_{\lambda}, \mathsf{A} \supset \mathsf{A}_1 \cup \mathsf{A}_2.$$

- Read: A_1 is clustered with A_2 at level λ .
- ► ∞→_λ partitions 𝔄_λ into equivalence classes of sets which should be in the same cluster.

The clusters of a graphon

- Define clusters to be "largest" element of each equivalence class.
 - Subtlety in defining "largest":
 - Suppose $\mathscr{A} \in \mathfrak{A}_{\lambda}/ \mathfrak{s}_{\lambda}$ is such an equivalence class.
 - Let A be any representative from *A*, let Z be a set of zero measure.
 - $A' = A \cup Z$ is a representative of \mathscr{A} .
 - ► In general there is no representative of *A* which strictly contains all other representatives in *A*
 - We can find reps. which contain every other rep. up to a null set, called the "essential maxima" of *A*:

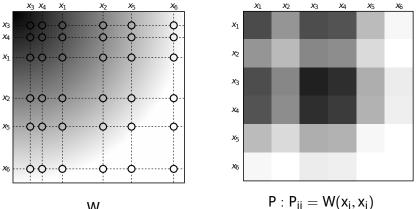
ess max
$$\mathscr{A} = \{ \mathsf{A} \in \mathscr{A} : \forall \mathsf{A}' \in \mathscr{A}, \, \mu(\mathsf{A}' \setminus \mathsf{A}) = 0 \}$$

• The clusters of W at level λ are the essential maxima of each equivalence class:

$$\mathbb{C}_{\mathsf{W}}(\lambda) = \{ \mathsf{ess} \max \mathscr{A} : \mathscr{A} \in \mathfrak{A}_{\lambda} / \mathsf{o}_{\lambda}. \}$$

Consistent algorithms

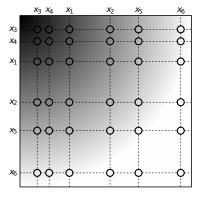
- Intuitively, estimating the graphon is related to clustering.
- It suffices to estimate the so-called edge probability matrix.



◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Consistent algorithms

- Intuitively, estimating the graphon is related to clustering.
- It suffices to estimate the so-called edge probability matrix.



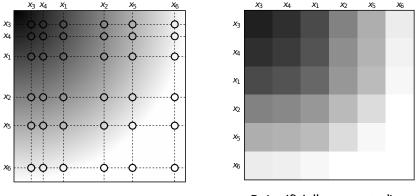
W

$$P:P_{ij}=W(x_i,x_j)$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Consistent algorithms

- Intuitively, estimating the graphon is related to clustering.
- It suffices to estimate the so-called edge probability matrix.

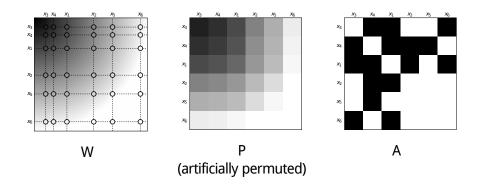


W

P (artificially permuted)

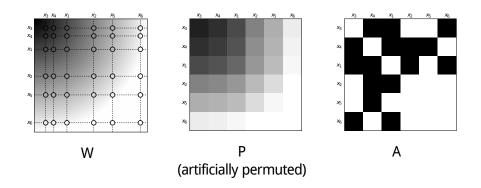
◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Sample an adjacency matrix A from P:



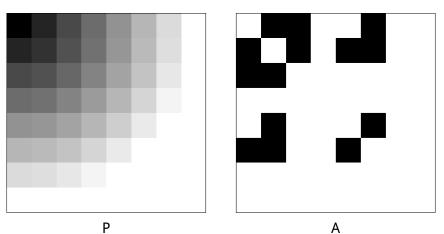
◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへで

Sample an adjacency matrix A from P:

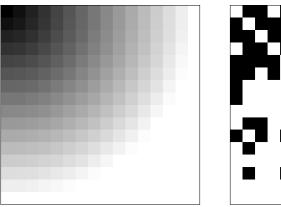


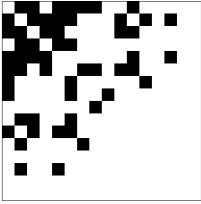
A is a poor estimate of P.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへで



n = 8





◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで

n = 32

Ρ

А

$$n = 64$$

Ρ

n = 128

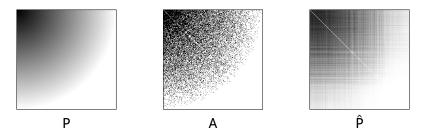
А

L

・ロト・日本・日本・日本・日本・日本

Edge probability estimation

Goal: Compute estimated edge probabilities P from A.

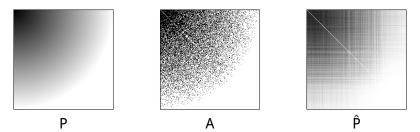


Theorem

If $||P - \hat{P}||_{\infty} \to 0$ in probability as $n \to \infty$, then single linkage clustering on \hat{P} is a consistent clustering method.

Edge probability estimation

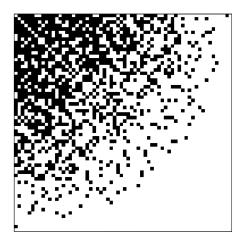
Goal: Compute estimated edge probabilities P from A.



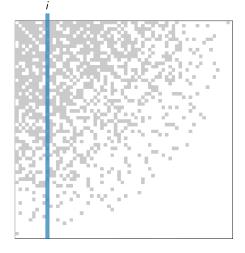
Theorem

If $\|P - \hat{P}\|_{\infty} \to 0$ in probability as $n \to \infty$, then single linkage clustering on \hat{P} is a consistent clustering method.

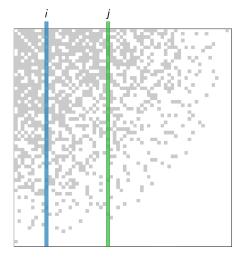
- We need a suitable estimator P̂ of edge probabilities.
- Recently, Zhang et al. (2015) proposed neighborhood smoothing.



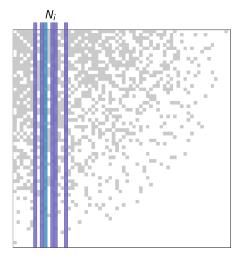
Given A, the adjacency matrix of a sampled graph...



Consider a node i and its corresponding column of A.

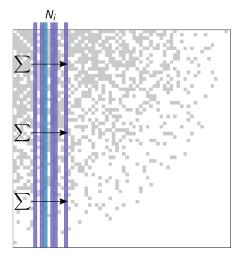


 $\begin{array}{l} \mbox{Measure similarity to every other node j:} \\ \mbox{d}(i,j) = \mbox{max}_{k \neq i,j} \left| (A^2)_{ik} - (A^2)_{jk} \right| \end{array}$

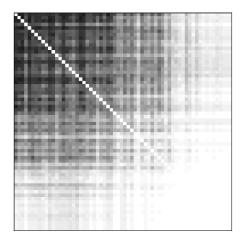


Form neighborhood N_i of nodes most similar to i.

・ロト ・ 同ト ・ ヨト ・ ヨト



Average within neighborhood to estimate edge probability: $\hat{P}_{ij} = \frac{1}{2|N_i|} \sum_{i' \in N_i} A_{i'j} + \frac{1}{2|N_j|} \sum_{j' \in N_j} A_{ij'}$



The result is a smoothed estimate \hat{P} of edge probabilities.

ヘロア 人間 アイヨア ヘロア