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Question 1
What is the “correct” clustering of the graph?
» There is no single answer.
» Right answer depends on nature of the data.
» When graph generated from a random graph model...
» Define the clusters of the model itself.

» Goal of clustering: recover the clusters of the model from a
single graph.



Question 2
What does it mean to recover the “correct” clustering?



Question 2
What does it mean to recover the “correct” clustering?

» Need a notion of statistical consistency for the clusters of the
random graph model.



Question 2
What does it mean to recover the “correct” clustering?

» Need a notion of statistical consistency for the clusters of the
random graph model.

Question 3
How do we recover the correct clustering?



Question 2
What does it mean to recover the “correct” clustering?

» Need a notion of statistical consistency for the clusters of the
random graph model.

Question 3
How do we recover the correct clustering?
» Do correct algorithms exist?



In this talk...

We assume a very general and powerful random graph model
called a graphon.



In this talk...

We assume a very general and powerful random graph model
called a graphon.

Question 1: What is the “correct” clustering of a graphon?
» We introduce the graphon cluster tree.
» Introduce a useful encoding which we call a mergeon.



In this talk...

We assume a very general and powerful random graph model
called a graphon.

Question 1: What is the “correct” clustering of a graphon?
» We introduce the graphon cluster tree.
» Introduce a useful encoding which we call a mergeon.

Question 2: What does it mean to recover the “correct” clustering?

» We develop a notion of statistical consistency for the graphon
cluster tree using the mergeon.



In this talk...

We assume a very general and powerful random graph model
called a graphon.

Question 1: What is the “correct” clustering of a graphon?
» We introduce the graphon cluster tree.
» Introduce a useful encoding which we call a mergeon.

Question 2: What does it mean to recover the “correct” clustering?

» We develop a notion of statistical consistency for the graphon
cluster tree using the mergeon.

Question 3: How do we recover the graphon cluster tree?

» We give sufficient conditions under which a graphon estimator
leads to a correct clustering method.

» We identify a practical, correct clustering algorithm.
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X y

A graphon's “nodes” are points in [0, 1].



What is a graphon?

A graphon is a symmetric, measurable function W : [0, 1]2 — [0, 1].

» Intuitively: the weight matrix of a graph on node set [0, 1].
X y

The weight of the “edge” (x,y) is W(X, y).



A graphon is a rich object...
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A graphon is a graph limit.




A graphon is a random graph model.

When W(x,y) is interpreted as a probability.



Sampling from a graphon

Start with a graph with integer node set [n].



Sampling from a graphon

X3 XX X2 X5 X

®
o O

Draw n points {X1,..., Xn} from Unif([0, 1]).



Sampling from a graphon

X3 XX X2 X5 X

5 ©
®
® &F
o

Connect nodes 3 and 4 with probability W(xs, X4).
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By chance, edge (3,4) is included.



Sampling from a graphon

X3 XX X2 X5 X

&

e

&7,
%

®

Connect nodes 1 and 2 with probability W(x1,X3).




Sampling from a graphon

X3 XX X2 X5 X

By chance, edge (1, 2) is omitted.



Sampling from a graphon

X3 XX X2 X5 X

X3

Xa
X1
X2

X5

X6

Repeat for all edges, resulting in a randomly-generated graph.



The stochastic blockmodel

Much theory of graph clustering
assumes a stochastic blockmodel.
Example:
» Randomly assign each of n nodes
to one of two communities.
» Add edge between two nodes with
probability:
> a, if in the same community,
» 3, otherwise.

This is a special case of a graphon.
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» Any graphon W defines a distribution on graphs.
Not uniquely! Many graphons define the same distribution.

Graphs are isomorphic if they are equivalent up to relabeling.

Graphons are weakly isomorphic if they are equivalent up to a
relabeling ¢ : [0,1] — [0, 1].
> ¢ must be measure preserving.

v

v

v
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An equivalence class of graphons under weak isomorphism
uniquely defines distribution.

W W?, o =2x mod 1

Weakly
isomorphic

Define
same
distribution




Question 1: What are the clusters of a graphon?

It is natural to define clusters in terms
of connected components.

Carefully define connectivity for
graphons.

v

v

\{

Intuitively: blockmodel graphon
should have the two clusters shown. A
Clusters should be:

» robust to changes to W on a set of
zero measure,
» preserved under relabeling of W.

v




Connectedness in graphs

S A\S

A'is disconnected if it can be partitioned into S and A \ S with no
crossing edge. Otherwise it is connected.



Connectedness in graphons

S

A\S

(Janson, 2008): A is disconnected if it can be partitioned into S and
A\ S such that the weight of almost every crossing edge is zero.
Otherwise it is connected.



Connectedness in graphons

S

A\S

A'is disconnected at level 1 if it can be partitioned into Sand A\ S
such that the weight of almost every crossing edge is less than .
Otherwise it is connected at level 1.
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Disconnected at level A3.
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Disconnected at level A3.
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Connected at level A5.
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The clusters of a graphon

Naturally define clusters in terms
of maximally connected sets:

1. Aset of nodes should be in a
cluster at level A if
it is
connected at all A’ < A.
2. Group the sets which should
be in the same cluster.

3. Define clusters to be the
“largest” elements of each

group.

7
2
%
.
_
Z
7
é

7

B



The clusters of a graphon

Naturally define clusters in terms
of maximally connected sets:

1. Aset of nodes should be in a
cluster at level A if
it is
connected at all A’ < A.
2. Group the sets which should
be in the same cluster.

3. Define clusters to be the
“largest” elements of each

group.
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We write Cy(1) to denote the set of clusters of W at level A.



Properties of clusters

» Connectivity of a set is not changed by adding/removing sets
of zero measure.
» Carefull A cluster € € Cw(A) is not a subset of [0, 1]!

» Itis an equivalence class of subsets equal up to null sets.
» Asingle point x € [0, 1] belongs to no cluster in particular.




Properties of clusters

» Claim: Clusters are preserved under relabelings.

» Le,, the clusters of a graphon W and the clusters of its
relabeling W¢ are in bijection.

» Surprisingly non-trivial to show due to graphon subtleties.

» Example: ¢(x) = 2x mod 1




The graphon cluster tree

» The set of clusters C\y from all levels has
hierarchical structure.
» Le., if Cand C’ are clusters, then either
u(CNC)=0,u(C\C)=0,0r
u(C’\ C) =0.

» We call Cy the graphon cluster tree of W.

» Claim: If two graphons are equivalent,
their cluster trees are isomorphic.

The goal of clustering (graphon setting)

» Given a graph sampled from W...
» recover the cluster tree of W.

AL @)
A3 o B
A2
A1

(Cw|



Mergeons

» We may naturally speak of the height at which clusters merge.
» But the merge height of any pair of nodes is undefined.
» Encode particular choice of merge heights with a mergeon.
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Mergeons

» We may naturally speak of the height at which clusters merge.
» But the merge height of any pair of nodes is undefined.
» Encode particular choice of merge heights with a mergeon.

A @) \ A @
Equivalent

Graphon W Mergeon M of W



Question 1: What is the “correct” clustering of a graphon?
Answer: The mergeon or, equivalently, the graphon cluster tree.

Question 2: What does it mean to recover the “correct” clustering?

Question 3: How do we recover the correct clustering?



The merge distortion
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C C’

How “close” are C and C’?



The merge distortion
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How “close” are C and C’?
Compare merge heights using mergeons.
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The merge distortion
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How “close” are C and C’?
Compare merge heights using mergeons.



The merge distortion

M(©. @)
M(@, @)

The merge distortion between C and C’ with respect to a (finite) set
Sis:
ds(C,C’) = max |M (s1.52) — M'(51,52)).

S1#S52€S



Convergence in merge distortion

Definition A
A sequence C,, converges in merge distortion to C if d(C,Cp) — 0
asn — oo,

NS g B S

(C @n (C @n



Consistent clustering methods

Question 2
What does it mean to recover the “correct” clustering?

» A clustering method is consistent for the graphon W if its
output converges in merge distortion to Cy, w.h.p. as n — .



Consistent clustering methods

Question 2
What does it mean to recover the “correct” clustering?

» A clustering method is consistent for the graphon W if its
output converges in merge distortion to Cy, w.h.p. as n — .
» Thatis:

> If Gp is a random graph of size n sampled from W,
> Cg, is the output of the method given G as input,
> then, for any fixed e > 0, P(d(Cw,Cg,) > €) > 0asn — oo.

» Consistent methods recover the clusters of the graphon.



Question 1: What is the “correct” clustering of a graphon?
Answer: The graphon cluster tree or, equivalently, the mergeon.

Question 2: What does it mean to recover the “correct” clustering?
Answer: Convergence in merge distortion to graphon cluster tree.

Question 3: How do we recover the correct clustering?

» Le., do algorithms exist which are consistent in merge
distortion?



Estimating edge probabilities

Consider sampling a graph from this
graphon.
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Estimating edge probabilities

The correct clustering is determined by these edge probabilities.



Estimating edge probabilities

But the edge probabilities are unknown, and the presence of an
edge (i, ) tells us little about Py;.



Estimating edge probabilities

Goal: Compute estimate P of edge probabilities from single graph.



Estimating edge probabilities

Goal: Compute estimate P of edge probabilities from single graph.

Theorem
If|IP — Plls — 0'in probability as n — oo, then single linkage
clustering on P is a consistent clustering method.



Neighborhood smoothing

» To cluster consistently, it is sufficient to estimate P in co-norm.
» We now search for such an estimator...
» Zhang et al. (2015) propose neighborhood smoothing.
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To cluster consistently, it is sufficient to estimate P in co-norm.
We now search for such an estimator...

Zhang et al. (2015) propose neighborhood smoothing.
Motivation:

~ If we had many observations of random graph: estimate P;; by
counting those which contain (i, j).
» But we have just one observation.
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To cluster consistently, it is sufficient to estimate P in co-norm.
We now search for such an estimator...

Zhang et al. (2015) propose neighborhood smoothing.
Motivation:

~ If we had many observations of random graph: estimate P;; by
counting those which contain (i, j).
» But we have just one observation.

\4

v

v

v

Approach:
» For node i, build neighborhood N; of similar nodes.
» Think of i’ € N; as another observation of i.

» To estimate P;;: count number of edges between j and a node
in Ni.



Neighborhood smoothing

Given this graph...



Neighborhood smoothing

O O O 04
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Given this graph... estimate Pj;.



Neighborhood smoothing

Build a neighborhood N; of nodes with similar connectivity to that
of i. Le., close in the distance: d(i, i) = maXyyi; |(A2)ik — (A2)ik]-



Neighborhood smoothing

O
o O 05

O 2

O
OO
O O OO

» Count number of edges from N; to node j (excluding i): 2.
» Normalize by size of neighborhood: 6.
» Estimated edge probability: Pj; = 2/6 = 1/3.

O



Consistency of neighborhood smoothing
» Zhang et al. (2015) prove that neighborhood smoothing is
consistent in mean squared error:

—||P PIZ = ZZ i—P)? >0 as no oo, whp.

» But convergence in this norm is too weak. We need
convergence in co-norm.

» We modify neighborhood smoothing and analyze.



Consistency of neighborhood smoothing

» Zhang et al. (2015) prove that neighborhood smoothing is
consistent in mean squared error:

—||P PIZ = ZZ i—P)? >0 as no oo, whp.

» But convergence in this norm is too weak. We need
convergence in co-norm.

» We modify neighborhood smoothing and analyze.

Theorem
The modified neighborhood smoothing estimator for P is
consistent in co-norm.



Corollary

Performing single linkage on the modified neighborhood
smoothing estimate of P is a consistent graphon clustering method.



Summary

Question 1: What is the “correct” clustering of a graphon?
Answer: The graphon cluster tree or, equivalently, the mergeon.

Question 2: What does it mean to recover the “correct” clustering?
Answer: Convergence in merge distortion to graphon cluster tree.

Question 3: How do we recover the correct clustering?
Answer: Modified neighborhood smoothing + single linkage
clustering.
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Weak isomorphism
» Any graphon W defines a graph distribution.
» Not uniquely! Many graphons define the same distribution.
» The distribution is uniquely determined up to relabeling of W.
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¢ :[0,1] — [0, 1] is a Lebesgue-measurable function whose
preimage preserves measure. That is, u(¢~"'(A)) = u(A) for all
measurable A c [0, 1].
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X=12 x>12




Weak isomorphism
» Any graphon W defines a graph distribution.
» Not uniquely! Many graphons define the same distribution.
» The distribution is uniquely determined up to relabeling of W.
Definition
A measure preserving transformation (i.e., graphon relabeling)
¢ :[0,1] — [0, 1] is a Lebesgue-measurable function whose
preimage preserves measure. That is, u(¢~"'(A)) = u(A) for all
measurable A c [0, 1].
Notation: W#(x,y) = W(¢(X), ¢(Y))-

¢(x) =2x mod 1




Weak isomorphism

Definition (Lovasz)
Two graphons W4 and W, are weakly isomorphic if there exist
measure preserving transformations ¢ and ¢, such that

a.e.
WET W,
» W; and W, define the same distribution iff they are weakly
isomorphic.



Weak isomorphism

Definition (Lovasz)
Two graphons W4 and W, are weakly isomorphic if there exist
measure preserving transformations ¢ and ¢, such that

a.e.
WET W,

» W; and W, define the same distribution iff they are weakly
isomorphic.
W W¢?, o =2x mod 1

Weakly
isomorphic

Define
same
distribution




The clusters of a graphon

1. Collect all subsets of [0, 1] which should be clustered at A:
Ay ={Ac[0,1] : u(A) > 0and Ais connected ¥ ' < 1.}

2. IfA,A,Ae Ay, and Ay UA, c A then Ay, A,, and A should all
be in the same cluster at 1. Consider them equivalent.

» Define equivalence relation on 2,:
Al oo Ay = JAcA,,AD A UA,.

» Read: A1 is clustered with A; at level A.
» o—o, partitions A, into equivalence classes of sets which should
be in the same cluster.



The clusters of a graphon

3. Define clusters to be “largest” element of each equivalence
class.
> Subtlety in defining “largest™:
> Suppose &7 € A, /o—, is such an equivalence class.
> Let A be any representative from <7, let Z be a set of zero
measure.
» A = AUZis arepresentative of <.
> In general there is no representative of .7 which strictly
contains all other representatives in </
» We can find reps. which contain every other rep. up to a null
set, called the “essential maxima” of «7:

essmax«/ ={Ae o VA e &, u(A"\ A) = 0}

» The clusters of W at level A are the essential maxima of each
equivalence class:

Cw(Ad) = {essmax .o/ : o € A, /o—,.}



Consistent algorithms

» Intuitively, estimating the graphon is related to clustering.
» It suffices to estimate the so-called edge probability matrix.

X3 X4 X1 X2 X1 X2 X3 X4

X5 X6

W P: Pij = W(Xi,XJ')
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Consistent algorithms

» Intuitively, estimating the graphon is related to clustering.
» It suffices to estimate the so-called edge probability matrix.

X3 X4 X1

X2

X5

X3 X4 X1 X2

X5 X6

P (artificially permuted)



Sample an adjacency matrix A from P:

w P A
(artificially permuted)



Sample an adjacency matrix A from P:

w P A
(artificially permuted)

A'is a poor estimate of P.















n=128




n =256




Edge probability estimation

Goal: Compute estimated edge probabilities P from A.

P A

Theorem
If|IP — Plls — 0O'in probability as n — oo, then single linkage
clustering on P is a consistent clustering method.



Edge probability estimation

Goal: Compute estimated edge probabilities P from A.

P A

Theorem
If|IP — Plls — 0O'in probability as n — oo, then single linkage
clustering on P is a consistent clustering method.

> We need a suitable estimator P of edge probabilities.

» Recently, Zhang et al. (2015) proposed neighborhood
smoothing.



Neighborhood smoothing

the adjacency matrix of a sampled graph...

Given A,



Neighborhood smoothing

]

Consider a node i and its corresponding column of A.



Neighborhood smoothing

! J

Measure similarity to every other node j:
d(i,J) = maxysi |(A%)i — (A2



Neighborhood smoothing

N;

Form neighborhood N; of nodes most similar to i.



Neighborhood smoothing

N;

Z_

Average within nelghborhood to estlmate edge probability:
PIJ - 2|N| 2| ’eN; AIJ + 2|N| ZJ eN; AIJ



Neighborhood smoothing

The result is a smoothed estimate P of edge probabilities.



