# Graphons, mergeons, and so on!

Justin Eldridge

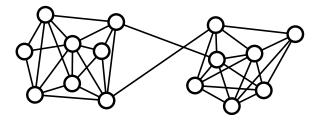
with Mikhail Belkin, Yusu Wang



THE OHIO STATE UNIVERSITY

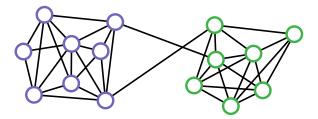
▲ロ▶▲掃▶▲ヨ▶▲ヨ▶ ヨーのQ@

# Graph clustering

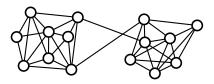


◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

# Graph clustering

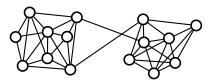


◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○



What is the "correct" clustering of the graph?



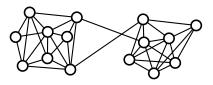


◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへで

### **Question 1**

What is the "correct" clustering of the graph?

There is no single answer.

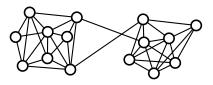


◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

### **Question 1**

What is the "correct" clustering of the graph?

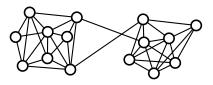
- There is no single answer.
- Right answer depends on nature of the data.



What is the "correct" clustering of the graph?

- There is no single answer.
- Right answer depends on nature of the data.
- When graph generated from a random graph model...

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

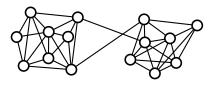


What is the "correct" clustering of the graph?

- There is no single answer.
- Right answer depends on nature of the data.
- When graph generated from a random graph model...

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

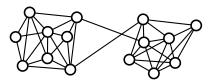
Define the clusters of the model itself.



What is the "correct" clustering of the graph?

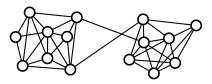
- There is no single answer.
- Right answer depends on nature of the data.
- When graph generated from a random graph model...
- Define the clusters of the model itself.
- Goal of clustering: recover the clusters of the model from a single graph.

・ロ・・ 中・・ ヨ・・ 日・ うくつ



What does it mean to recover the "correct" clustering?

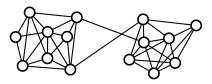




What does it mean to recover the "correct" clustering?

Need a notion of statistical consistency for the clusters of the random graph model.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

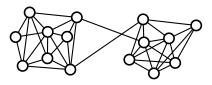


What does it mean to recover the "correct" clustering?

Need a notion of statistical consistency for the clusters of the random graph model.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Question 3 How do we recover the correct clustering?



What does it mean to recover the "correct" clustering?

Need a notion of statistical consistency for the clusters of the random graph model.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

### Question 3

How do we recover the correct clustering?

Do correct algorithms exist?

We assume a very general and powerful random graph model called a graphon.

We assume a very general and powerful random graph model called a graphon.

Question 1: What is the "correct" clustering of a graphon?

- We introduce the graphon cluster tree.
- Introduce a useful encoding which we call a mergeon.

We assume a very general and powerful random graph model called a graphon.

Question 1: What is the "correct" clustering of a graphon?

- We introduce the graphon cluster tree.
- Introduce a useful encoding which we call a mergeon.

Question 2: What does it mean to recover the "correct" clustering?

We develop a notion of statistical consistency for the graphon cluster tree using the mergeon.

We assume a very general and powerful random graph model called a graphon.

Question 1: What is the "correct" clustering of a graphon?

- We introduce the graphon cluster tree.
- Introduce a useful encoding which we call a mergeon.

Question 2: What does it mean to recover the "correct" clustering?

We develop a notion of statistical consistency for the graphon cluster tree using the mergeon.

Question 3: How do we recover the graphon cluster tree?

We give sufficient conditions under which a graphon estimator leads to a correct clustering method.

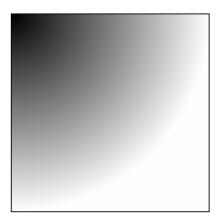
ション (日本) (日本) (日本) (日本) (日本)

We identify a practical, correct clustering algorithm.

## What is a graphon?

A graphon is a symmetric, measurable function  $W : [0, 1]^2 \rightarrow [0, 1]$ .

▶ Intuitively: the weight matrix of a graph on node set [0, 1].

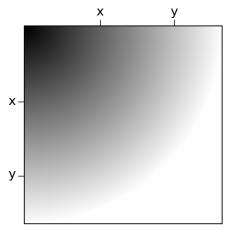


・ロ・・ 中・・ ヨ・・ 日・ うくつ

## What is a graphon?

A graphon is a symmetric, measurable function  $W : [0, 1]^2 \rightarrow [0, 1]$ .

▶ Intuitively: the weight matrix of a graph on node set [0, 1].



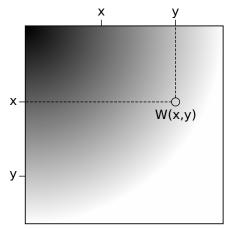
A graphon's "nodes" are points in [0, 1].

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

## What is a graphon?

A graphon is a symmetric, measurable function  $W : [0, 1]^2 \rightarrow [0, 1]$ .

▶ Intuitively: the weight matrix of a graph on node set [0, 1].



The weight of the "edge" (x, y) is W(x, y).

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

#### Large networks and graph limits

#### László Lovász

#### Contents

| Preface                                              | xi  |
|------------------------------------------------------|-----|
| Part 1. Large graphs: an informal introduction       | 1   |
| Chapter 1. Very large networks                       | 3   |
| 1.1. Huge networks everywhere                        | 3   |
| 1.2. What to ask about them?                         | 4   |
| 1.3. How to obtain information about them?           | 5   |
| 1.4. How to model them?                              | 8   |
| 1.5. How to approximate them?                        | 11  |
| 1.6. How to run algorithms on them?                  | 18  |
| 1.7. Bounded degree graphs                           | 22  |
| Chapter 2. Large graphs in mathematics and physics   | 25  |
| 2.1. Extremal graph theory                           | 25  |
| 2.2. Statistical physics                             | 32  |
|                                                      |     |
| Part 2. The algebra of graph homomorphisms           | 35  |
| Chapter 3. Notation and terminology                  | 37  |
| 3.1. Basic notation                                  | 37  |
| 3.2. Graph theory                                    | 38  |
| 3.3. Operations on graphs                            | 39  |
| Chapter 4. Graph parameters and connection matrices  | 41  |
| 4.1. Graph parameters and graph properties           | -41 |
| 4.2. Connection matrices                             | 42  |
| 4.3. Finite connection rank                          | 45  |
| Chapter 5. Graph homomorphisms                       | 55  |
| 5.1. Existence of homomorphisms                      | 55  |
| 5.2. Homomorphism numbers                            | 56  |
| 5.3. What hom functions can express                  | 62  |
| 5.4. Homomorphism and isomorphism                    | 68  |
| 5.5. Independence of homomorphism functions          | 72  |
| 5.6. Characterizing homomorphism numbers             | 75  |
| 5.7. The structure of the homomorphism set           | 79  |
| Chapter 6. Graph algebras and homomorphism functions | 83  |
| 6.1. Algebras of quantum graphs                      | 83  |
| 6.2. Reflection positivity                           | 88  |
|                                                      |     |

◆□ → < 団 → < 三 → < 三 → ○ < ○ </p>

#### Large networks and graph limits

#### László Lovász

| *111   | CONTENTS                                            |            |
|--------|-----------------------------------------------------|------------|
| 6.3.   | Contractors and connectors                          | 94         |
| 6.4.   | Algebras for homomorphism functions                 | 101        |
|        | Computing parameters with finite connection rank    | 106        |
| 6.6.   | The polynomial method                               | 108        |
| Part 3 | . Limits of dense graph sequences                   | 113        |
| Chapte | r 7. Kernels and graphons                           | 115        |
|        | Kernels, graphons and stepfunctions                 | 115        |
|        | Generalizing homomorphisms                          | 116        |
| 7.3.   | Weak isomorphism I                                  | 121        |
| 7.4.   | Sums and products                                   | 122        |
| 7.5.   | Kernel operators                                    | 124        |
| Chapte | r 8. The cut distance                               | 127        |
| 8.1.   | The cut distance of graphs                          | 127        |
| 8.2.   | Cut norm and cut distance of kernels                | 131        |
| 8.3.   | Weak and L <sub>1</sub> -topologies                 | 138        |
|        | r 9. Szemerédi partitions                           | 141        |
|        | Regularity Lemma for graphs                         | 141        |
|        | Regularity Lemma for kernels                        | 144        |
|        | Compactness of the graphon space                    | 149        |
|        | Fractional and integral overlays                    | 151        |
| 9.5.   | Uniqueness of regularity partitions                 | 154        |
|        | r 10. Sampling                                      | 157        |
|        | . W-random graphs                                   | 157        |
|        | Sample concentration                                | 158        |
| 10.3   |                                                     | 160        |
|        | . The distance of a sample from the original        | 164        |
| 10.5   |                                                     | 167        |
| 10.6   | . Inverse Counting Lemma<br>. Weak isomorphism II   | 169<br>170 |
| 10.7   | . Weak isomorphism II                               | 170        |
|        | r 11. Convergence of dense graph sequences          | 173        |
|        | . Sampling, homomorphism densities and cut distance | 173        |
| 11.2   |                                                     | 174        |
| 11.3   | . The limit graphon                                 | 180        |
|        |                                                     | 185        |
|        | Many disguises of graph limits                      | 193        |
| 11.6   |                                                     | 194        |
| 11.7   |                                                     | 196        |
|        | . First applications                                |            |
| Chapte | r 12. Convergence from the right                    | 201        |
|        | Homomorphisms to the right and multicuts            | 201        |
|        | . The overlay functional                            | 205        |
| 12.3   |                                                     | 207        |
| 12.4   | . rught-convergent graph sequences                  | 211        |
|        |                                                     |            |

#### Large networks and graph limits

#### László Lovász

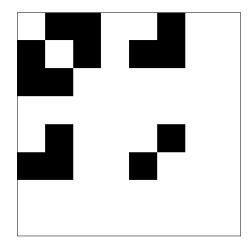
| CONTENTS                                                        | in . |
|-----------------------------------------------------------------|------|
| Chapter 13. On the structure of graphons                        | 217  |
| 13.1. The general form of a graphon                             | 217  |
| 13.2. Weak isomorphism III                                      | 220  |
| 13.3. Pure kernels                                              | 222  |
| 13.4. The topology of a graphon                                 | 225  |
| 13.5. Symmetries of graphons                                    | 234  |
| Chapter 14. The space of graphons                               | 239  |
| 14.1. Norms defined by graphs                                   | 239  |
| 14.2. Other norms on the kernel space                           | 242  |
| 14.3. Closures of graph properties                              | 247  |
| 14.4. Graphon varieties                                         | 250  |
| 14.5. Random graphons                                           | 256  |
| 14.6. Exponential random graph models                           | 259  |
| Chapter 15. Algorithms for large graphs and graphons            | 263  |
| 15.1. Parameter estimation                                      | 263  |
| 15.2. Distinguishing graph properties                           | 266  |
| 15.3. Property testing                                          | 268  |
| 15.4. Computable structures                                     | 276  |
| Chapter 16. Extremal theory of dense graphs                     | 281  |
| 16.1. Nonnegativity of quantum graphs and reflection positivity | 281  |
| 16.2. Variational calculus of graphons                          | 283  |
| 16.3. Densities of complete graphs                              | 285  |
| 16.4. The classical theory of extremal graphs                   | 293  |
| <ol><li>Local vs. global optima</li></ol>                       | 294  |
| 16.6. Deciding inequalities between subgraph densities          | 299  |
| 16.7. Which graphs are extremal?                                | 307  |
| Chapter 17. Multigraphs and decorated graphs                    | 317  |
| 17.1. Compact decorated graphs                                  | 318  |
| 17.2. Multigraphs with unbounded edge multiplicities            | 325  |
| Part 4. Limits of bounded degree graphs                         | 327  |
| Chapter 18. Graphings                                           | 329  |
| 18.1. Borel graphs                                              | 329  |
| 18.2. Measure preserving graphs                                 | 332  |
| 18.3. Random rooted graphs                                      | 338  |
| 18.4. Subgraph densities in graphings                           | 344  |
| 18.5. Local equivalence                                         | 346  |
| 18.6. Graphings and groups                                      | 349  |
| Chapter 19. Convergence of bounded degree graphs                | 351  |
| 19.1. Local convergence and limit                               | 351  |
| 19.2. Local-global convergence                                  | 360  |
| Chapter 20. Right convergence of bounded degree graphs          | 367  |
| 20.1. Random homomorphisms to the right                         | 367  |
| 20.2. Convergence from the right                                | 375  |
|                                                                 |      |

#### Large networks and graph limits

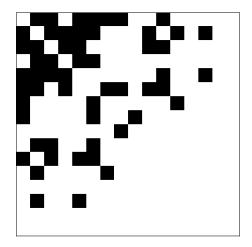
László Lovász

| ĸ                                                            | CONTENTS                                                                                                                                   |                                                                                         |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
|                                                              | 21. On the structure of graphings<br>Hyperfiniteness<br>Homogeneous decomposition                                                          | 383<br>383<br>393                                                                       |
| 22.1.                                                        | 22. Algorithms for bounded degree graphs<br>Estimable parameters<br>Testable properties<br>Computable structures                           | 397<br>397<br>402<br>405                                                                |
| Part 5.                                                      | Extensions: a brief survey                                                                                                                 | 413                                                                                     |
| 23.1.<br>23.2.<br>23.3.<br>23.4.                             | 23. Other combinatorial structures<br>Sparse (but not very sparse) graphs<br>Edge-coloring models<br>Hypergraphs<br>Categories<br>And more | 415<br>415<br>416<br>421<br>425<br>429                                                  |
| A.1.<br>A.2.<br>A.3.<br>A.4.<br>A.5.<br>A.6.<br>A.7.<br>A.8. |                                                                                                                                            | $\begin{array}{c} 433\\ 433\\ 434\\ 436\\ 441\\ 444\\ 445\\ 446\\ 446\\ 447\end{array}$ |
| Bibliogr                                                     | sphy                                                                                                                                       | 451                                                                                     |
| Author                                                       | Index                                                                                                                                      | 465                                                                                     |
| Subject                                                      | Index                                                                                                                                      | 469                                                                                     |
| Notation                                                     | Index                                                                                                                                      | 473                                                                                     |
|                                                              |                                                                                                                                            |                                                                                         |

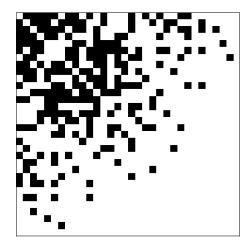
◆□ → < 団 → < 三 → < 三 → ○ < ○ </p>



<□> <圖> < => < => < => < => <</p>



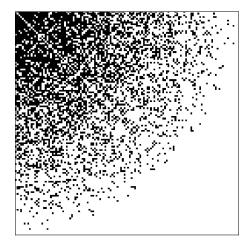
◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 - の々で



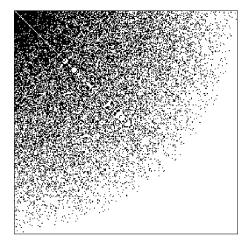
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々で



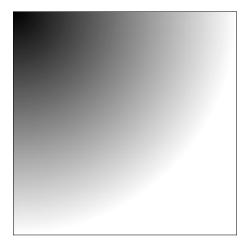
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

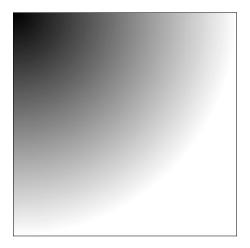


◆□▶▲母▶▲臣▶▲臣▶ 臣 のぐの



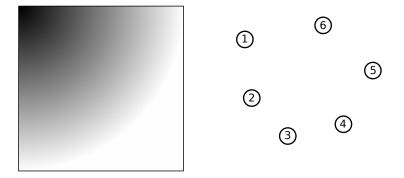
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

## A graphon is a random graph model.

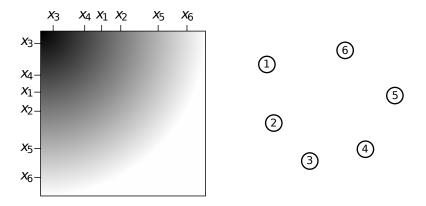


When W(x, y) is interpreted as a probability.

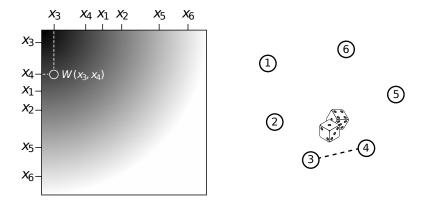
ヘロト 人間 ト 人 ヨト 人 ヨトー



Start with a graph with integer node set [n].

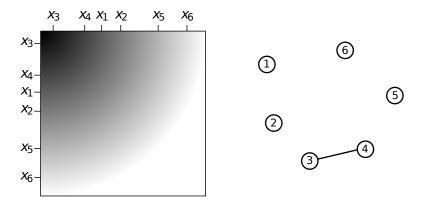


Draw n points  $\{x_1, \ldots, x_n\}$  from Unif([0, 1]).



Connect nodes 3 and 4 with probability  $W(x_3, x_4)$ .

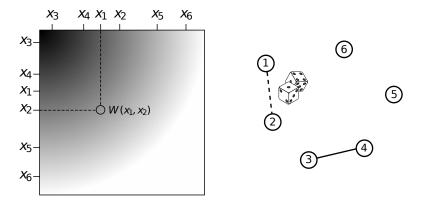
▲□▶ ▲圖▶ ▲目▶ ▲目▶ 三目 - のへで



### By chance, edge (3, 4) is included.

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 三目 - のへで

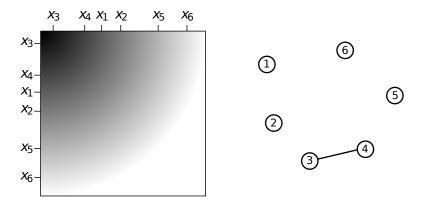
# Sampling from a graphon



Connect nodes 1 and 2 with probability  $W(x_1, x_2)$ .

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 – のへで

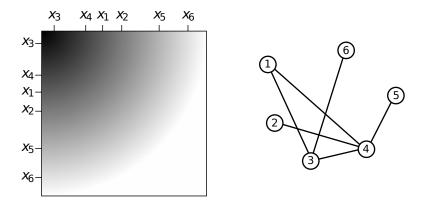
# Sampling from a graphon



#### By chance, edge (1, 2) is omitted.

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 三目 - のへで

# Sampling from a graphon



Repeat for all edges, resulting in a randomly-generated graph.

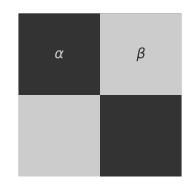
▲□▶ ▲圖▶ ▲目▶ ▲目▶ 三目 - のへで

# The stochastic blockmodel

Much theory of graph clustering assumes a stochastic blockmodel. Example:

- Randomly assign each of n nodes to one of two communities.
- Add edge between two nodes with probability:
  - α, if in the same community,
  - β, otherwise.

This is a special case of a graphon.



・ロ・・ 中・・ ヨ・・ 日・ うくつ

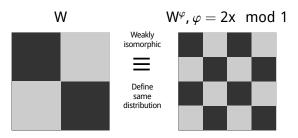
# Equivalent graphons

- Any graphon W defines a distribution on graphs.
- Not uniquely! Many graphons define the same distribution.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

# Equivalent graphons

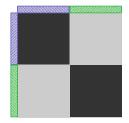
- Any graphon W defines a distribution on graphs.
- ▶ Not uniquely! Many graphons define the same distribution.
- Graphs are isomorphic if they are equivalent up to relabeling.
- ► Graphons are weakly isomorphic if they are equivalent up to a relabeling  $\varphi$  : [0, 1]  $\rightarrow$  [0, 1].
  - $\varphi$  must be measure preserving.
- An equivalence class of graphons under weak isomorphism uniquely defines distribution.

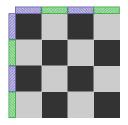


◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ の ○ ○

# Question 1: What are the clusters of a graphon?

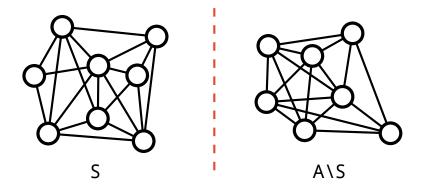
- It is natural to define clusters in terms of connected components.
- Carefully define connectivity for graphons.
- Intuitively: blockmodel graphon should have the two clusters shown.
- Clusters should be:
  - robust to changes to W on a set of zero measure,
  - preserved under relabeling of W.





◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

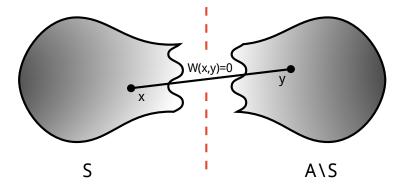
# Connectedness in graphs



A is disconnected if it can be partitioned into S and A  $\$  S with no crossing edge. Otherwise it is connected.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

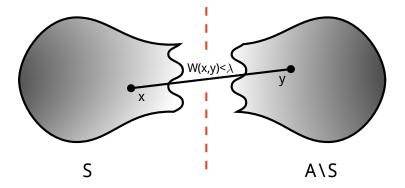
## Connectedness in graphons



(Janson, 2008): A is disconnected if it can be partitioned into S and A  $\ S$  such that the weight of almost every crossing edge is zero. Otherwise it is connected.

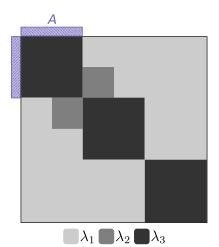
・ロト ・ 同ト ・ ヨト ・ ヨト

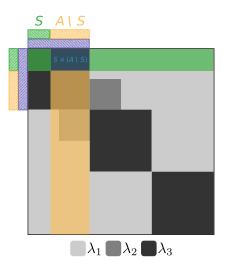
## Connectedness in graphons

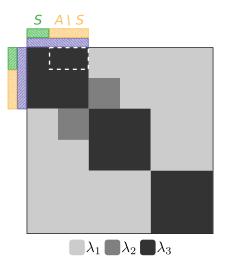


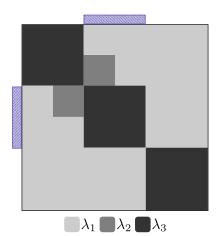
A is disconnected at level  $\lambda$  if it can be partitioned into S and A \ S such that the weight of almost every crossing edge is less than  $\lambda$ . Otherwise it is connected at level  $\lambda$ .

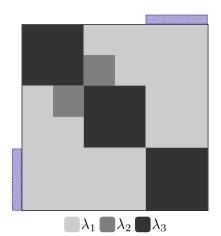
・ロト ・ 同ト ・ ヨト ・ ヨト

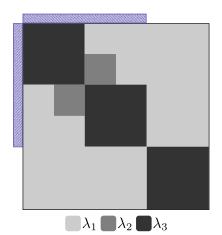


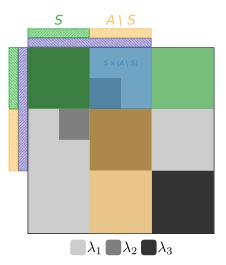


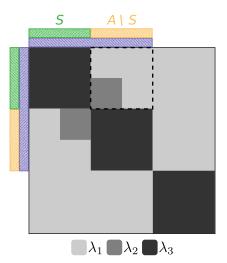


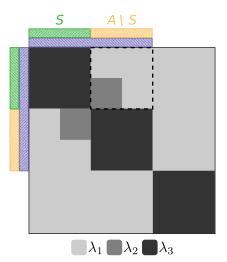




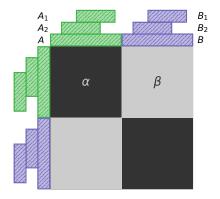








Naturally define clusters in terms of maximally connected sets:

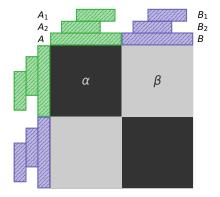


イロト イポト イヨト

32

Naturally define clusters in terms of maximally connected sets:

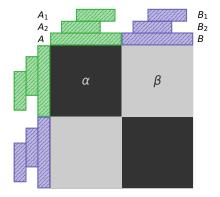
 A set of nodes should be in a cluster at level λ if it is connected at level λ.



◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Naturally define clusters in terms of maximally connected sets:

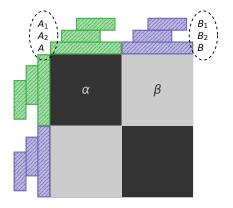
A set of nodes should be in a cluster at level λ if it is connected at level λ it is connected at all λ' < λ.</li>



◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Naturally define clusters in terms of maximally connected sets:

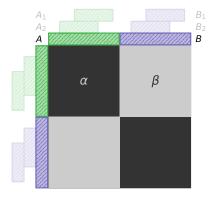
- A set of nodes should be in a cluster at level λ if it is connected at level λ it is connected at all λ' < λ.</li>
- 2. Group the sets which should be in the same cluster.



(日) (四) (王) (日) (日) (日)

Naturally define clusters in terms of maximally connected sets:

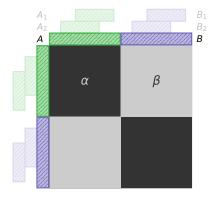
- A set of nodes should be in a cluster at level λ if it is connected at level λ it is connected at all λ' < λ.</li>
- 2. Group the sets which should be in the same cluster.
- Define clusters to be the "largest" elements of each group.



・ロ・・ 中・・ ヨ・・ 日・ うくつ

Naturally define clusters in terms of maximally connected sets:

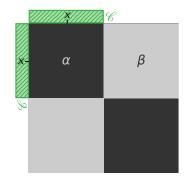
- A set of nodes should be in a cluster at level λ if it is connected at level λ it is connected at all λ' < λ.</li>
- 2. Group the sets which should be in the same cluster.
- Define clusters to be the "largest" elements of each group.



We write  $\mathbb{C}_{W}(\lambda)$  to denote the set of clusters of W at level  $\lambda$ .

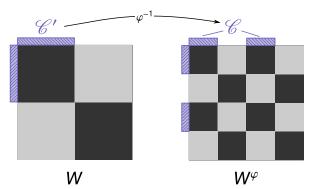
### **Properties of clusters**

- Connectivity of a set is not changed by adding/removing sets of zero measure.
- ► Careful! A cluster  $\mathscr{C} \in \mathbb{C}_W(\lambda)$  is not a subset of [0, 1]!
  - It is an equivalence class of subsets equal up to null sets.
  - A single point  $x \in [0, 1]$  belongs to no cluster in particular.



## **Properties of clusters**

- Claim: Clusters are preserved under relabelings.
- ► I.e., the clusters of a graphon W and the clusters of its relabeling W<sup>φ</sup> are in bijection.
  - Surprisingly non-trivial to show due to graphon subtleties.
- Example:  $\varphi(x) = 2x \mod 1$



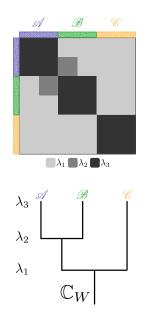
・ロ・・ 中・・ ヨ・・ 日・ うくつ

# The graphon cluster tree

- The set of clusters C<sub>W</sub> from all levels has hierarchical structure.
  - ► I.e., if C and C' are clusters, then either  $\mu$ (C  $\cap$  C') = 0,  $\mu$ (C  $\setminus$  C') = 0, or  $\mu$ (C'  $\setminus$  C) = 0.
- We call  $\mathbb{C}_W$  the graphon cluster tree of W.
- Claim: If two graphons are equivalent, their cluster trees are isomorphic.

#### The goal of clustering (graphon setting)

- Given a graph sampled from W...
- recover the cluster tree of W.

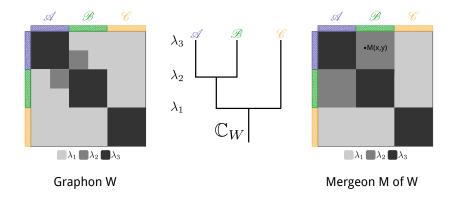


・ロト ・ 何ト ・ ヨト ・ ヨト

-

#### Mergeons

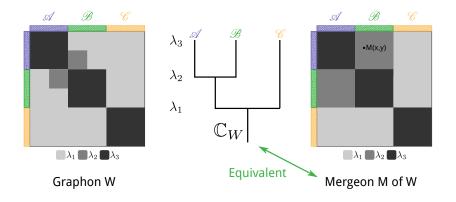
- We may naturally speak of the height at which clusters merge.
- But the merge height of any pair of nodes is undefined.
- Encode particular choice of merge heights with a mergeon.

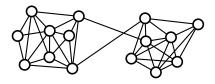


◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

#### Mergeons

- We may naturally speak of the height at which clusters merge.
- But the merge height of any pair of nodes is undefined.
- Encode particular choice of merge heights with a mergeon.



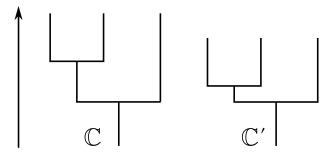


Question 1: What is the "correct" clustering of a graphon? Answer: The mergeon or, equivalently, the graphon cluster tree.

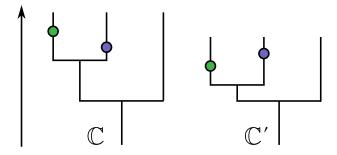
Question 2: What does it mean to recover the "correct" clustering?

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ の ○ ○

Question 3: How do we recover the correct clustering?

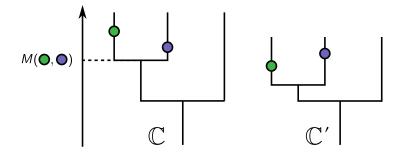


How "close" are  $\mathbb C$  and  $\mathbb C'?$ 



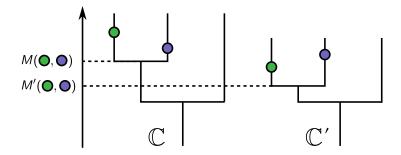
#### How "close" are $\mathbb{C}$ and $\mathbb{C}$ ? Compare merge heights using mergeons.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○



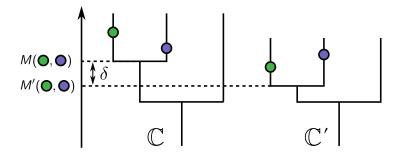
#### How "close" are $\mathbb{C}$ and $\mathbb{C}$ ? Compare merge heights using mergeons.

・ロト ・ 同ト ・ ヨト ・ ヨト



How "close" are  $\mathbb{C}$  and  $\mathbb{C}$ ? Compare merge heights using mergeons.

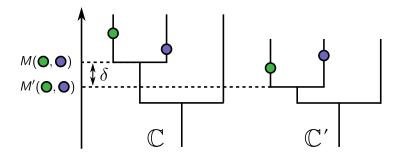
◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○



How "close" are  $\mathbb{C}$  and  $\mathbb{C}$ ? Compare merge heights using mergeons.

・ロト ・ 同ト ・ ヨト ・ ヨト

#### The merge distortion



The merge distortion between  $\mathbb C$  and  $\mathbb C'$  with respect to a (finite) set S is:

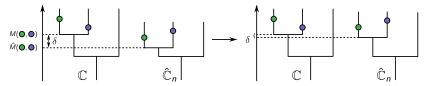
$$d_{S}(\mathbb{C},\mathbb{C}') = \max_{s_{1}\neq s_{2}\in S} \left| \mathsf{M}(s_{1},s_{2}) - \mathsf{M}'(s_{1},s_{2}) \right|.$$

・ロト ・ 同ト ・ ヨト ・ ヨト

#### Convergence in merge distortion

#### Definition

A sequence  $\hat{\mathbb{C}}_n$  converges in merge distortion to  $\mathbb{C}$  if  $d(\mathbb{C}, \hat{\mathbb{C}}_n) \to 0$  as  $n \to \infty$ .



(日)

#### Consistent clustering methods

#### Question 2

What does it mean to recover the "correct" clustering?

A clustering method is consistent for the graphon W if its output converges in merge distortion to C<sub>W</sub>, w.h.p. as n → ∞.

## Consistent clustering methods

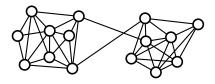
#### Question 2

What does it mean to recover the "correct" clustering?

- A clustering method is consistent for the graphon W if its output converges in merge distortion to C<sub>W</sub>, w.h.p. as n → ∞.
- That is:
  - ▶ If G<sub>n</sub> is a random graph of size n sampled from W,
  - $\hat{\mathbb{C}}_{G_n}$  is the output of the method given  $G_n$  as input,
  - ▶ then, for any fixed  $\epsilon > 0$ ,  $\mathbb{P}(d(\mathbb{C}_W, \hat{\mathbb{C}}_{G_n}) > \epsilon) \rightarrow 0$  as  $n \rightarrow \infty$ .

・ロ・・ 日・・ ヨ・・ 日・ うくつ

Consistent methods recover the clusters of the graphon.



Question 1: What is the "correct" clustering of a graphon? Answer: The graphon cluster tree or, equivalently, the mergeon.

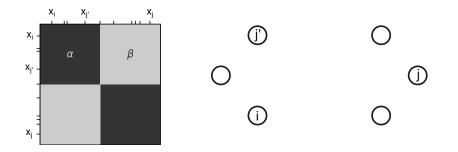
Question 2: What does it mean to recover the "correct" clustering? Answer: Convergence in merge distortion to graphon cluster tree.

Question 3: How do we recover the correct clustering?

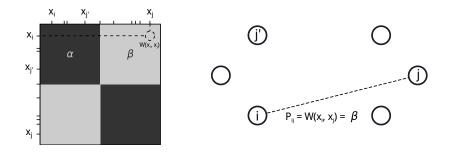
I.e., do algorithms exist which are consistent in merge distortion?



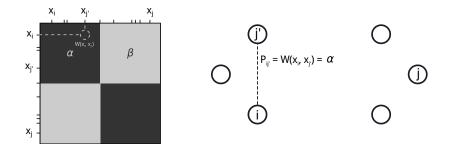
# Consider sampling a graph from this graphon.



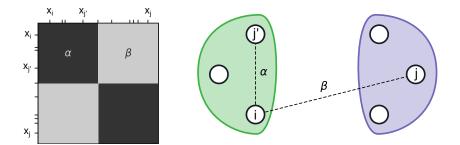
◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで



#### <□> <圖> < => < => < => < => <</p>

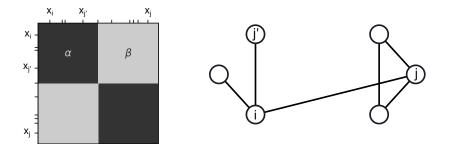


#### ◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 の々で



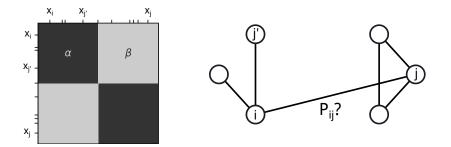
The correct clustering is determined by these edge probabilities.

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●



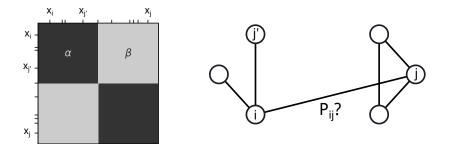
But the edge probabilities are unknown, and the presence of an edge (i, j) tells us little about  $P_{ij}$ .

(日)



Goal: Compute estimate P of edge probabilities from single graph.

・ロト ・ 同ト ・ ヨト ・ ヨト



Goal: Compute estimate P of edge probabilities from single graph.

#### Theorem

If  $||P - \hat{P}||_{\infty} \to 0$  in probability as  $n \to \infty$ , then single linkage clustering on  $\hat{P}$  is a consistent clustering method.

▶ To cluster consistently, it is sufficient to estimate P in  $\infty$ -norm.

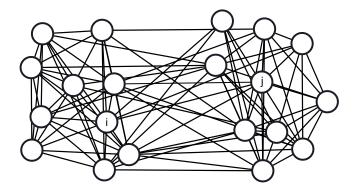
- We now search for such an estimator...
- Zhang et al. (2015) propose neighborhood smoothing.

- To cluster consistently, it is sufficient to estimate P in  $\infty$ -norm.
- We now search for such an estimator...
- Zhang et al. (2015) propose neighborhood smoothing.
- Motivation:
  - ► If we had many observations of random graph: estimate P<sub>ij</sub> by counting those which contain (i, j).

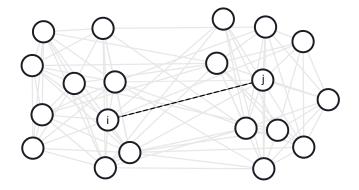
But we have just one observation.

- To cluster consistently, it is sufficient to estimate P in  $\infty$ -norm.
- We now search for such an estimator...
- Zhang et al. (2015) propose neighborhood smoothing.
- Motivation:
  - If we had many observations of random graph: estimate P<sub>ij</sub> by counting those which contain (i, j).
  - But we have just one observation.
- Approach:
  - For node i, build neighborhood N<sub>i</sub> of similar nodes.
  - Think of  $i' \in N_i$  as another observation of i.
  - To estimate P<sub>ij</sub>: count number of edges between j and a node in N<sub>i</sub>.

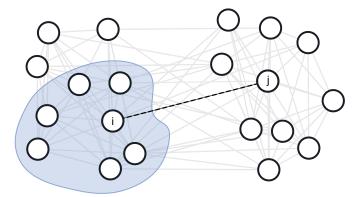
(日本) (日本) (日本) (日本) (日本) (日本) (日本)



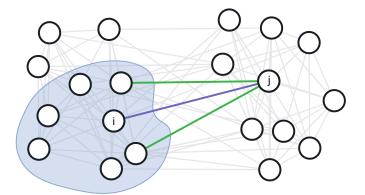
Given this graph...



Given this graph... estimate P<sub>ij</sub>.



Build a neighborhood N<sub>i</sub> of nodes with similar connectivity to that of i. I.e., close in the distance:  $d(i, i') = \max_{k \neq i, i'} |(A^2)_{ik} - (A^2)_{i'k}|$ .



- Count number of edges from N<sub>i</sub> to node j (excluding i): 2.
- Normalize by size of neighborhood: 6.
- Estimated edge probability:  $\hat{P}_{ij} = 2/6 = 1/3$ .

#### Consistency of neighborhood smoothing

Zhang et al. (2015) prove that neighborhood smoothing is consistent in mean squared error:

$$\frac{1}{n^2}\|P-\hat{P}\|_F^2 = \frac{1}{n^2}\sum_{ij}(P_{ij}-\hat{P}_{ij})^2 \rightarrow 0 \quad \text{ as } \quad n \rightarrow \infty, \text{ w.h.p.}.$$

- But convergence in this norm is too weak. We need convergence in ∞-norm.
- We modify neighborhood smoothing and analyze.

## Consistency of neighborhood smoothing

Zhang et al. (2015) prove that neighborhood smoothing is consistent in mean squared error:

$$\frac{1}{n^2}\|P-\hat{P}\|_F^2 = \frac{1}{n^2}\sum_{ij}(P_{ij}-\hat{P}_{ij})^2 \rightarrow 0 \quad \text{ as } \quad n \rightarrow \infty, \text{ w.h.p.}.$$

- But convergence in this norm is too weak. We need convergence in ∞-norm.
- We modify neighborhood smoothing and analyze.

#### Theorem

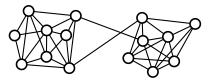
The modified neighborhood smoothing estimator for P is consistent in  $\infty\text{-norm}.$ 

#### Corollary

Performing single linkage on the modified neighborhood smoothing estimate of P is a consistent graphon clustering method.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

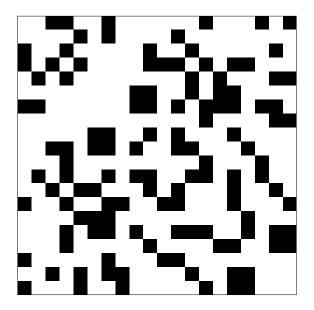
#### Summary



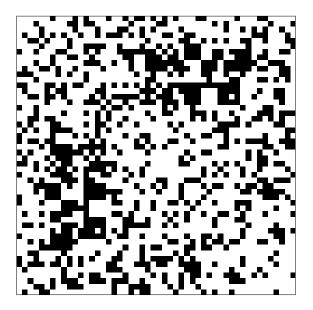
Question 1: What is the "correct" clustering of a graphon? Answer: The graphon cluster tree or, equivalently, the mergeon.

Question 2: What does it mean to recover the "correct" clustering? Answer: Convergence in merge distortion to graphon cluster tree.

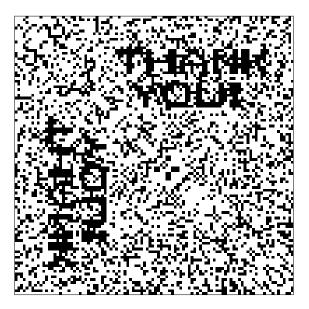
Question 3: How do we recover the correct clustering? Answer: Modified neighborhood smoothing + single linkage clustering.

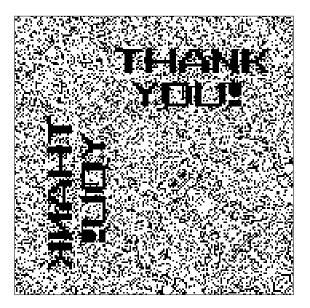


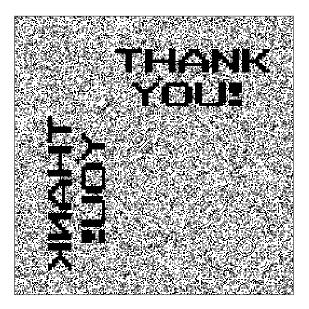
▲□▶▲圖▶▲≧▶▲≧▶ 差 のく⊙











http://web.cse.ohio-state.edu/~eldridge/

◆□▶▲舂▶▲≣▶▲≣▶ ▲□▶

- Any graphon W defines a graph distribution.
- ▶ Not uniquely! Many graphons define the same distribution.
- ► The distribution is uniquely determined up to relabeling of W.

<ロト 4 回 ト 4 三 ト 4 三 ト 三 の Q ()</p>

- Any graphon W defines a graph distribution.
- ► Not uniquely! Many graphons define the same distribution.
- ► The distribution is uniquely determined up to relabeling of W.

・ロ・・ 日・・ ヨ・・ 日・ うくつ

#### Definition

A measure preserving transformation (i.e., graphon relabeling)  $\varphi : [0, 1] \rightarrow [0, 1]$  is a Lebesgue-measurable function whose preimage preserves measure. That is,  $\mu(\varphi^{-1}(A)) = \mu(A)$  for all measurable  $A \subset [0, 1]$ .

Notation:  $W^{\varphi}(x, y) = W(\varphi(x), \varphi(y)).$ 

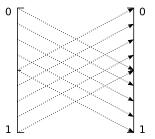
- Any graphon W defines a graph distribution.
- ▶ Not uniquely! Many graphons define the same distribution.
- ► The distribution is uniquely determined up to relabeling of W.

#### Definition

A measure preserving transformation (i.e., graphon relabeling)  $\varphi : [0, 1] \rightarrow [0, 1]$  is a Lebesgue-measurable function whose preimage preserves measure. That is,  $\mu(\varphi^{-1}(A)) = \mu(A)$  for all measurable  $A \subset [0, 1]$ .

Notation:  $W^{\varphi}(x, y) = W(\varphi(x), \varphi(y)).$ 

$$\varphi(\mathbf{X}) = \begin{cases} \mathbf{X} + \frac{1}{2} & \mathbf{X} \le \frac{1}{2}, \\ \mathbf{X} - \frac{1}{2} & \mathbf{X} > \frac{1}{2} \end{cases}$$



白人不同人不同人不同人。

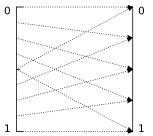
- Any graphon W defines a graph distribution.
- ► Not uniquely! Many graphons define the same distribution.
- ► The distribution is uniquely determined up to relabeling of W.

#### Definition

A measure preserving transformation (i.e., graphon relabeling)  $\varphi : [0, 1] \rightarrow [0, 1]$  is a Lebesgue-measurable function whose preimage preserves measure. That is,  $\mu(\varphi^{-1}(A)) = \mu(A)$  for all measurable  $A \subset [0, 1]$ .

Notation:  $W^{\varphi}(x, y) = W(\varphi(x), \varphi(y)).$ 

$$\varphi(\mathbf{x}) = 2\mathbf{x} \mod 1$$



・ コ ト ・ ( 目 ト ・ 目 ト ・ 日 ト

# Weak isomorphism

#### Definition (Lovász)

Two graphons  $W_1$  and  $W_2$  are weakly isomorphic if there exist measure preserving transformations  $\varphi_1$  and  $\varphi_2$  such that  $W_1^{\varphi_1} \stackrel{a.e.}{=} W_2^{\varphi_2}$ .

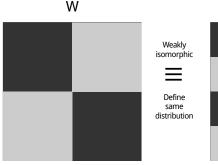
 W<sub>1</sub> and W<sub>2</sub> define the same distribution iff they are weakly isomorphic.

# Weak isomorphism

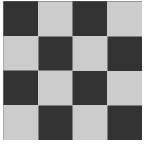
### Definition (Lovász)

Two graphons  $W_1$  and  $W_2$  are weakly isomorphic if there exist measure preserving transformations  $\varphi_1$  and  $\varphi_2$  such that  $W_1^{\varphi_1} \stackrel{a.e.}{=} W_2^{\varphi_2}$ .

 W<sub>1</sub> and W<sub>2</sub> define the same distribution iff they are weakly isomorphic.



$$W^{\varphi}$$
,  $\varphi = 2x \mod 1$ 



◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ の ○ ○

### The clusters of a graphon

1. Collect all subsets of [0, 1] which should be clustered at  $\lambda$ :

 $\mathfrak{A}_{\lambda} = \{ \mathsf{A} \subset [0, 1] : \mu(\mathsf{A}) > 0 \text{ and } \mathsf{A} \text{ is connected } \forall \lambda' < \lambda \}$ 

- 2. If  $A_1, A_2, A \in \mathfrak{A}_{\lambda}$ , and  $A_1 \cup A_2 \subset A$ , then  $A_1, A_2$ , and A should all be in the same cluster at  $\lambda$ . Consider them equivalent.
  - Define equivalence relation on 𝔄<sub>λ</sub>:

$$\mathsf{A}_1 \leadsto_{\lambda} \mathsf{A}_2 \Longleftrightarrow \exists \mathsf{A} \in \mathfrak{A}_{\lambda}, \mathsf{A} \supset \mathsf{A}_1 \cup \mathsf{A}_2.$$

- Read:  $A_1$  is clustered with  $A_2$  at level  $\lambda$ .
- ► ∞→<sub>λ</sub> partitions 𝔄<sub>λ</sub> into equivalence classes of sets which should be in the same cluster.

### The clusters of a graphon

- Define clusters to be "largest" element of each equivalence class.
  - Subtlety in defining "largest":
    - Suppose  $\mathscr{A} \in \mathfrak{A}_{\lambda}/ \mathfrak{s}_{\lambda}$  is such an equivalence class.
    - Let A be any representative from *A*, let Z be a set of zero measure.
    - $A' = A \cup Z$  is a representative of  $\mathscr{A}$ .
  - ► In general there is no representative of *A* which strictly contains all other representatives in *A*
  - We can find reps. which contain every other rep. up to a null set, called the "essential maxima" of *A*:

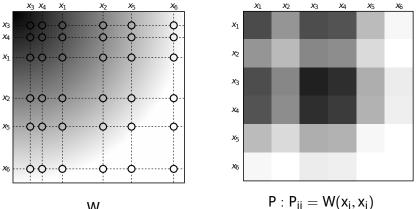
ess max 
$$\mathscr{A} = \{ \mathsf{A} \in \mathscr{A} : \forall \mathsf{A}' \in \mathscr{A}, \, \mu(\mathsf{A}' \setminus \mathsf{A}) = 0 \}$$

• The clusters of W at level  $\lambda$  are the essential maxima of each equivalence class:

$$\mathbb{C}_{\mathsf{W}}(\lambda) = \{ \mathsf{ess} \max \mathscr{A} : \mathscr{A} \in \mathfrak{A}_{\lambda} / \mathsf{o}_{\lambda}. \}$$

### **Consistent algorithms**

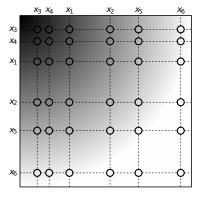
- Intuitively, estimating the graphon is related to clustering.
- It suffices to estimate the so-called edge probability matrix.



◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

### Consistent algorithms

- Intuitively, estimating the graphon is related to clustering.
- It suffices to estimate the so-called edge probability matrix.



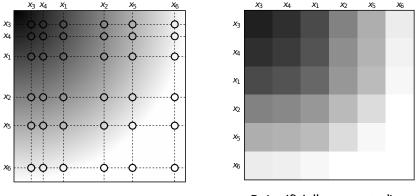
W

$$P:P_{ij}=W(x_i,x_j)$$

・ロト ・ 同ト ・ ヨト ・ ヨト

### Consistent algorithms

- Intuitively, estimating the graphon is related to clustering.
- It suffices to estimate the so-called edge probability matrix.

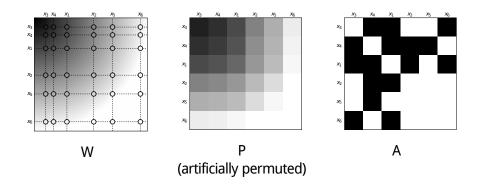


W

P (artificially permuted)

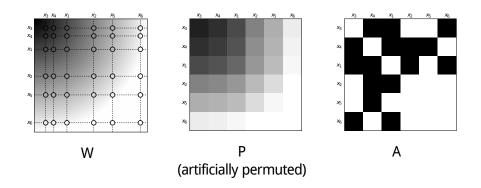
◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

#### Sample an adjacency matrix A from P:



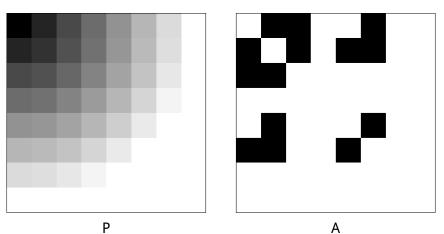
◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへで

#### Sample an adjacency matrix A from P:



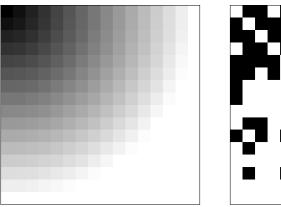
#### A is a poor estimate of P.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへで

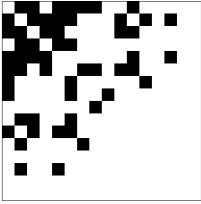




n = 8









◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで

n = 32

Ρ

А

$$n = 64$$

Ρ

n = 128

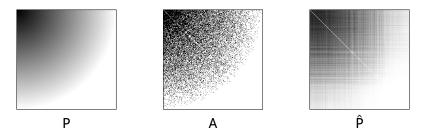
А

L

・ロト・日本・日本・日本・日本・日本

# Edge probability estimation

Goal: Compute estimated edge probabilities P from A.

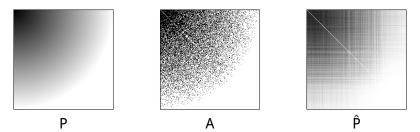


#### Theorem

If  $||P - \hat{P}||_{\infty} \to 0$  in probability as  $n \to \infty$ , then single linkage clustering on  $\hat{P}$  is a consistent clustering method.

# Edge probability estimation

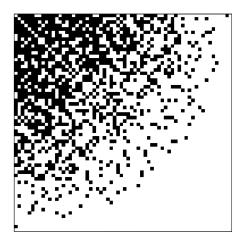
Goal: Compute estimated edge probabilities P from A.



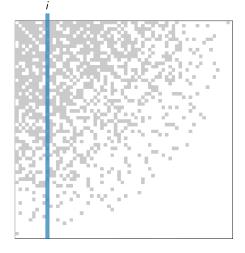
#### Theorem

If  $\|P - \hat{P}\|_{\infty} \to 0$  in probability as  $n \to \infty$ , then single linkage clustering on  $\hat{P}$  is a consistent clustering method.

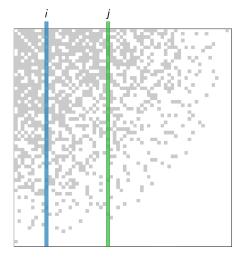
- We need a suitable estimator P̂ of edge probabilities.
- Recently, Zhang et al. (2015) proposed neighborhood smoothing.



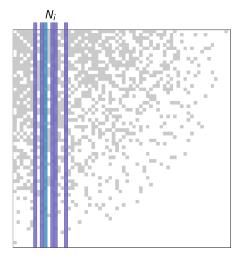
Given A, the adjacency matrix of a sampled graph...



Consider a node i and its corresponding column of A.

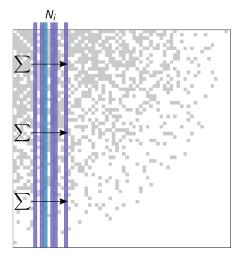


 $\begin{array}{l} \mbox{Measure similarity to every other node j:} \\ \mbox{d}(i,j) = \mbox{max}_{k \neq i,j} \left| (A^2)_{ik} - (A^2)_{jk} \right| \end{array}$ 

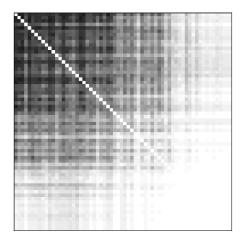


Form neighborhood N<sub>i</sub> of nodes most similar to i.

・ロト ・ 同ト ・ ヨト ・ ヨト



Average within neighborhood to estimate edge probability:  $\hat{P}_{ij} = \frac{1}{2|N_i|} \sum_{i' \in N_i} A_{i'j} + \frac{1}{2|N_j|} \sum_{j' \in N_j} A_{ij'}$ 



The result is a smoothed estimate  $\hat{P}$  of edge probabilities.

ヘロア 人間 アイヨア ヘロア