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Graphons, mergeons, and so on!

Justin Eldridge
with

Mikhail Belkin, Yusu Wang
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Graph clustering
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Question 1
What is the “correct” clustering of the graph?

▶ There is no single answer.
▶ Right answer depends on nature of the data.
▶ When graph generated from a random graphmodel...
▶ Define the clusters of the model itself.
▶ Goal of clustering: recover the clusters of the model from a
single graph.
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Question 1
What is the “correct” clustering of the graph?
▶ There is no single answer.

▶ Right answer depends on nature of the data.
▶ When graph generated from a random graphmodel...
▶ Define the clusters of the model itself.
▶ Goal of clustering: recover the clusters of the model from a
single graph.
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Question 1
What is the “correct” clustering of the graph?
▶ There is no single answer.
▶ Right answer depends on nature of the data.

▶ When graph generated from a random graphmodel...
▶ Define the clusters of the model itself.
▶ Goal of clustering: recover the clusters of the model from a
single graph.
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Question 1
What is the “correct” clustering of the graph?
▶ There is no single answer.
▶ Right answer depends on nature of the data.
▶ When graph generated from a random graphmodel...

▶ Define the clusters of the model itself.
▶ Goal of clustering: recover the clusters of the model from a
single graph.
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Question 1
What is the “correct” clustering of the graph?
▶ There is no single answer.
▶ Right answer depends on nature of the data.
▶ When graph generated from a random graphmodel...
▶ Define the clusters of the model itself.

▶ Goal of clustering: recover the clusters of the model from a
single graph.
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Question 1
What is the “correct” clustering of the graph?
▶ There is no single answer.
▶ Right answer depends on nature of the data.
▶ When graph generated from a random graphmodel...
▶ Define the clusters of the model itself.
▶ Goal of clustering: recover the clusters of the model from a
single graph.
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Question 2
What does it mean to recover the “correct” clustering?

▶ Need a notion of statistical consistency for the clusters of the
random graphmodel.

Question 3
How do we recover the correct clustering?
▶ Do correct algorithms exist?
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Question 2
What does it mean to recover the “correct” clustering?

▶ Need a notion of statistical consistency for the clusters of the
random graphmodel.

Question 3
How do we recover the correct clustering?
▶ Do correct algorithms exist?
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Question 2
What does it mean to recover the “correct” clustering?

▶ Need a notion of statistical consistency for the clusters of the
random graphmodel.

Question 3
How do we recover the correct clustering?

▶ Do correct algorithms exist?
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Question 2
What does it mean to recover the “correct” clustering?

▶ Need a notion of statistical consistency for the clusters of the
random graphmodel.

Question 3
How do we recover the correct clustering?
▶ Do correct algorithms exist?
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In this talk...
We assume a very general and powerful random graphmodel
called a graphon.

Question 1: What is the “correct” clustering of a graphon?
▶ We introduce the graphon cluster tree.
▶ Introduce a useful encoding which we call a mergeon.

Question 2: What does it mean to recover the “correct” clustering?
▶ We develop a notion of statistical consistency for the graphon
cluster tree using the mergeon.

Question 3: How do we recover the graphon cluster tree?
▶ We give sufficient conditions under which a graphon estimator
leads to a correct clustering method.

▶ We identify a practical, correct clustering algorithm.
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▶ We develop a notion of statistical consistency for the graphon
cluster tree using the mergeon.
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leads to a correct clustering method.

▶ We identify a practical, correct clustering algorithm.
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Question 1: What is the “correct” clustering of a graphon?
▶ We introduce the graphon cluster tree.
▶ Introduce a useful encoding which we call a mergeon.

Question 2: What does it mean to recover the “correct” clustering?
▶ We develop a notion of statistical consistency for the graphon
cluster tree using the mergeon.

Question 3: How do we recover the graphon cluster tree?
▶ We give sufficient conditions under which a graphon estimator
leads to a correct clustering method.

▶ We identify a practical, correct clustering algorithm.
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In this talk...
We assume a very general and powerful random graphmodel
called a graphon.

Question 1: What is the “correct” clustering of a graphon?
▶ We introduce the graphon cluster tree.
▶ Introduce a useful encoding which we call a mergeon.

Question 2: What does it mean to recover the “correct” clustering?
▶ We develop a notion of statistical consistency for the graphon
cluster tree using the mergeon.

Question 3: How do we recover the graphon cluster tree?
▶ We give sufficient conditions under which a graphon estimator
leads to a correct clustering method.

▶ We identify a practical, correct clustering algorithm.
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What is a graphon?
A graphon is a symmetric, measurable function W : [0, 1]2 → [0, 1].

▶ Intuitively: the weight matrix of a graph on node set [0, 1].
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What is a graphon?
A graphon is a symmetric, measurable function W : [0, 1]2 → [0, 1].

▶ Intuitively: the weight matrix of a graph on node set [0, 1].
yx

x

y

A graphon’s “nodes” are points in [0, 1].
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What is a graphon?
A graphon is a symmetric, measurable function W : [0, 1]2 → [0, 1].

▶ Intuitively: the weight matrix of a graph on node set [0, 1].

W(x,y)

yx

x

y

The weight of the “edge” (x, y) is W(x, y).
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A graphon is a rich object...
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A graphon is a rich object...
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A graphon is a rich object...
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A graphon is a rich object...
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A graphon is a graph limit.
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A graphon is a graph limit.
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A graphon is a graph limit.
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A graphon is a graph limit.
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A graphon is a graph limit.
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A graphon is a graph limit.
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A graphon is a graph limit.
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A graphon is a random graphmodel.

WhenW(x, y) is interpreted as a probability.
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Sampling from a graphon

1

2

3
4

5

6

Start with a graph with integer node set [n].



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Sampling from a graphon

1

2

3
4

5

6

x1

x2

x3

x4 x5 x6

x1

x2x3

x4

x5

x6

Draw n points {x1, . . . , xn} from Unif([0, 1]).
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Sampling from a graphon

1

2

3
4

5

6

x1

x2

x3

x4 x5 x6

x1

x2x3

x4

x5

x6

W(x3,x4)

Connect nodes 3 and 4 with probability W(x3, x4).
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Sampling from a graphon

1

2

3
4

5

6

x1

x2

x3

x4 x5 x6

x1

x2x3

x4

x5

x6

By chance, edge (3, 4) is included.
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Sampling from a graphon

1

2

3
4

5

6

x1

x2

x3

x4 x5 x6

x1

x2x3

x4

x5

x6

W(x1,x2)

Connect nodes 1 and 2 with probability W(x1, x2).
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Sampling from a graphon

1

2

3
4

5

6

x1

x2

x3

x4 x5 x6

x1

x2x3

x4

x5

x6

By chance, edge (1, 2) is omitted.
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Sampling from a graphon

1

2

3
4

5

6

x1

x2

x3

x4 x5 x6

x1

x2x3

x4

x5

x6

Repeat for all edges, resulting in a randomly-generated graph.
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The stochastic blockmodel

Much theory of graph clustering
assumes a stochastic blockmodel.
Example:
▶ Randomly assign each of n nodes
to one of two communities.

▶ Add edge between two nodes with
probability:

▶ α, if in the same community,
▶ β, otherwise.

This is a special case of a graphon.
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Equivalent graphons

▶ Any graphonW defines a distribution on graphs.
▶ Not uniquely! Many graphons define the same distribution.

▶ Graphs are isomorphic if they are equivalent up to relabeling.
▶ Graphons are weakly isomorphic if they are equivalent up to a
relabeling φ : [0, 1]→ [0, 1].

▶ φmust be measure preserving.

▶ An equivalence class of graphons under weak isomorphism
uniquely defines distribution.

W
Weakly

isomorphic

≡
Define
same

distribution

Wφ, φ = 2x mod 1
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Equivalent graphons

▶ Any graphonW defines a distribution on graphs.
▶ Not uniquely! Many graphons define the same distribution.
▶ Graphs are isomorphic if they are equivalent up to relabeling.
▶ Graphons are weakly isomorphic if they are equivalent up to a
relabeling φ : [0, 1]→ [0, 1].

▶ φmust be measure preserving.

▶ An equivalence class of graphons under weak isomorphism
uniquely defines distribution.

W
Weakly

isomorphic

≡
Define
same

distribution

Wφ, φ = 2x mod 1
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Question 1: What are the clusters of a graphon?

▶ It is natural to define clusters in terms
of connected components.

▶ Carefully define connectivity for
graphons.

▶ Intuitively: blockmodel graphon
should have the two clusters shown.

▶ Clusters should be:
▶ robust to changes to W on a set of
zero measure,

▶ preserved under relabeling of W.
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Connectedness in graphs

S A\S

A is disconnected if it can be partitioned into S and A \ S with no
crossing edge. Otherwise it is connected.
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Connectedness in graphons

S A\S

x
y

W(x,y)=0

(Janson, 2008): A is disconnected if it can be partitioned into S and
A \ S such that the weight of almost every crossing edge is zero.
Otherwise it is connected.
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Connectedness in graphons

S A\S

x
y

W(x,y)<

A is disconnected at level λ if it can be partitioned into S and A \ S
such that the weight of almost every crossing edge is less than λ.
Otherwise it is connected at level λ.
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Connected at level λ3.
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× ( A \ S ) 

Connected at level λ3.
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Connected at level λ3.
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Connected at level λ3.
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Connected at level λ3.
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Disconnected at level λ3.
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Disconnected at level λ3.
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Disconnected at level λ3.
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Connected at level λ2.
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The clusters of a graphon

Naturally define clusters in terms
of maximally connected sets:

1. A set of nodes should be in a
cluster at level λ if

2. Group the sets which should
be in the same cluster.

3. Define clusters to be the
“largest” elements of each
group.

A1
A2

1

B2
B
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The clusters of a graphon

Naturally define clusters in terms
of maximally connected sets:
1. A set of nodes should be in a

cluster at level λ if it is
connected at level λ.

2. Group the sets which should
be in the same cluster.

3. Define clusters to be the
“largest” elements of each
group.

A1
A2

1

B2
B
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The clusters of a graphon

Naturally define clusters in terms
of maximally connected sets:
1. A set of nodes should be in a

cluster at level λ if it is
connected at level λ it is
connected at all λ′ < λ.

2. Group the sets which should
be in the same cluster.

3. Define clusters to be the
“largest” elements of each
group.

A1
A2

1

B2
B
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The clusters of a graphon

Naturally define clusters in terms
of maximally connected sets:
1. A set of nodes should be in a

cluster at level λ if it is
connected at level λ it is
connected at all λ′ < λ.

2. Group the sets which should
be in the same cluster.

3. Define clusters to be the
“largest” elements of each
group.

A1
A2

1

B2
B
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The clusters of a graphon

Naturally define clusters in terms
of maximally connected sets:
1. A set of nodes should be in a

cluster at level λ if it is
connected at level λ it is
connected at all λ′ < λ.

2. Group the sets which should
be in the same cluster.

3. Define clusters to be the
“largest” elements of each
group.

A1
A2

1

B2
B
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The clusters of a graphon

Naturally define clusters in terms
of maximally connected sets:
1. A set of nodes should be in a

cluster at level λ if it is
connected at level λ it is
connected at all λ′ < λ.

2. Group the sets which should
be in the same cluster.

3. Define clusters to be the
“largest” elements of each
group.

A1
A2

1

B2
B

We write CW(λ) to denote the set of clusters of W at level λ.
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Properties of clusters

▶ Connectivity of a set is not changed by adding/removing sets
of zero measure.

▶ Careful! A cluster C ∈ CW(λ) is not a subset of [0, 1]!
▶ It is an equivalence class of subsets equal up to null sets.
▶ A single point x ∈ [0, 1] belongs to no cluster in particular.
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Properties of clusters

▶ Claim: Clusters are preserved under relabelings.
▶ I.e., the clusters of a graphonW and the clusters of its
relabeling Wφ are in bijection.

▶ Surprisingly non-trivial to show due to graphon subtleties.

▶ Example: φ(x) = 2x mod 1
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The graphon cluster tree

▶ The set of clusters CW from all levels has
hierarchical structure.

▶ I.e., if C and C′ are clusters, then either
µ(C ∩ C′) = 0, µ(C \ C′) = 0, or
µ(C′ \ C) = 0.

▶ We call CW the graphon cluster tree of W.
▶ Claim: If two graphons are equivalent,
their cluster trees are isomorphic.

The goal of clustering (graphon setting)

▶ Given a graph sampled fromW...
▶ recover the cluster tree of W.
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Mergeons

▶ Wemay naturally speak of the height at which clusters merge.
▶ But the merge height of any pair of nodes is undefined.
▶ Encode particular choice of merge heights with a mergeon.

Graphon W Mergeon M of W

M(x,y)
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Mergeons

▶ Wemay naturally speak of the height at which clusters merge.
▶ But the merge height of any pair of nodes is undefined.
▶ Encode particular choice of merge heights with a mergeon.

Graphon W Mergeon M of W
Equivalent

M(x,y)
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Question 1: What is the “correct” clustering of a graphon?
Answer: The mergeon or, equivalently, the graphon cluster tree.

Question 2: What does it mean to recover the “correct” clustering?

Question 3: How do we recover the correct clustering?
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The merge distortion

How “close” are C and C′?
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The merge distortion

How “close” are C and C′?
Compare merge heights using mergeons.
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The merge distortion

How “close” are C and C′?
Compare merge heights using mergeons.
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The merge distortion

How “close” are C and C′?
Compare merge heights using mergeons.
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The merge distortion

How “close” are C and C′?
Compare merge heights using mergeons.
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The merge distortion

The merge distortion between C and C′ with respect to a (finite) set
S is:

dS(C,C′) = max
s1,s2∈S

∣∣∣M(s1, s2) −M′(s1, s2)
∣∣∣ .
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Convergence in merge distortion

Definition
A sequence Ĉn converges in merge distortion to C if d(C, Ĉn)→ 0
as n→ ∞.

{
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Consistent clustering methods

Question 2
What does it mean to recover the “correct” clustering?

▶ A clustering method is consistent for the graphonW if its
output converges in merge distortion to CW, w.h.p. as n→ ∞.

▶ That is:
▶ If Gn is a random graph of size n sampled fromW,
▶ ĈGn is the output of the method given Gn as input,
▶ then, for any fixed ϵ > 0, P(d(CW, ĈGn) > ϵ)→ 0 as n→ ∞.

▶ Consistent methods recover the clusters of the graphon.
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Consistent clustering methods

Question 2
What does it mean to recover the “correct” clustering?

▶ A clustering method is consistent for the graphonW if its
output converges in merge distortion to CW, w.h.p. as n→ ∞.

▶ That is:
▶ If Gn is a random graph of size n sampled fromW,
▶ ĈGn is the output of the method given Gn as input,
▶ then, for any fixed ϵ > 0, P(d(CW, ĈGn) > ϵ)→ 0 as n→ ∞.

▶ Consistent methods recover the clusters of the graphon.
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Question 1: What is the “correct” clustering of a graphon?
Answer: The graphon cluster tree or, equivalently, the mergeon.

Question 2: What does it mean to recover the “correct” clustering?
Answer: Convergence in merge distortion to graphon cluster tree.

Question 3: How do we recover the correct clustering?
▶ I.e., do algorithms exist which are consistent in merge
distortion?
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Estimating edge probabilities

Consider sampling a graph from this
graphon.
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Estimating edge probabilities

xjxj'xi

xj

xj'

xi

i

j

j'
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Estimating edge probabilities

xjxj'xi

xj

xj'

xi

Pij = W(xi, xj) = i

j

j'
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Estimating edge probabilities

xjxj'xi

xj

xj'

xi

Pij' = W(xi, xj') = 

i

j

j'
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Estimating edge probabilities

xjxj'xi

xj

xj'

xi

i

j

j'

The correct clustering is determined by these edge probabilities.
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Estimating edge probabilities

xjxj'xi

xj

xj'

xi

i

j

j'

But the edge probabilities are unknown, and the presence of an
edge (i, j) tells us little about Pij.
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Estimating edge probabilities

xjxj'xi

xj

xj'

xi

Pij?i

j

j'

Goal: Compute estimate P̂ of edge probabilities from single graph.
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Estimating edge probabilities

xjxj'xi

xj

xj'

xi

Pij?i

j

j'

Goal: Compute estimate P̂ of edge probabilities from single graph.

Theorem
If ∥P − P̂∥∞ → 0 in probability as n→ ∞, then single linkage
clustering on P̂ is a consistent clustering method.
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Neighborhood smoothing

▶ To cluster consistently, it is sufficient to estimate P in∞-norm.
▶ We now search for such an estimator...
▶ Zhang et al. (2015) propose neighborhood smoothing.

▶ Motivation:
▶ If we hadmany observations of random graph: estimate Pij by
counting those which contain (i, j).

▶ But we have just one observation.
▶ Approach:

▶ For node i, build neighborhood Ni of similar nodes.
▶ Think of i′ ∈ Ni as another observation of i.
▶ To estimate Pij: count number of edges between j and a node
in Ni.
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Neighborhood smoothing

▶ To cluster consistently, it is sufficient to estimate P in∞-norm.
▶ We now search for such an estimator...
▶ Zhang et al. (2015) propose neighborhood smoothing.
▶ Motivation:

▶ If we hadmany observations of random graph: estimate Pij by
counting those which contain (i, j).

▶ But we have just one observation.

▶ Approach:
▶ For node i, build neighborhood Ni of similar nodes.
▶ Think of i′ ∈ Ni as another observation of i.
▶ To estimate Pij: count number of edges between j and a node
in Ni.
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Neighborhood smoothing

▶ To cluster consistently, it is sufficient to estimate P in∞-norm.
▶ We now search for such an estimator...
▶ Zhang et al. (2015) propose neighborhood smoothing.
▶ Motivation:

▶ If we hadmany observations of random graph: estimate Pij by
counting those which contain (i, j).

▶ But we have just one observation.
▶ Approach:

▶ For node i, build neighborhood Ni of similar nodes.
▶ Think of i′ ∈ Ni as another observation of i.
▶ To estimate Pij: count number of edges between j and a node
in Ni.
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Neighborhood smoothing

i

j

Given this graph...
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Neighborhood smoothing

i

j

Given this graph... estimate Pij.
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Neighborhood smoothing

i

j

Build a neighborhood Ni of nodes with similar connectivity to that
of i. I.e., close in the distance: d(i, i′) = maxk,i,i′

∣∣∣(A2)ik − (A2)i′k
∣∣∣.
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Neighborhood smoothing

i

j

▶ Count number of edges from Ni to node j (excluding i): 2.
▶ Normalize by size of neighborhood: 6.
▶ Estimated edge probability: P̂ij = 2/6 = 1/3.
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Consistency of neighborhood smoothing

▶ Zhang et al. (2015) prove that neighborhood smoothing is
consistent in mean squared error:

1
n2 ∥P − P̂∥

2
F =

1
n2

∑
ij

(Pij − P̂ij)2 → 0 as n→ ∞, w.h.p..

▶ But convergence in this norm is too weak. We need
convergence in∞-norm.

▶ Wemodify neighborhood smoothing and analyze.

Theorem
The modified neighborhood smoothing estimator for P is
consistent in∞-norm.
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Consistency of neighborhood smoothing

▶ Zhang et al. (2015) prove that neighborhood smoothing is
consistent in mean squared error:

1
n2 ∥P − P̂∥

2
F =

1
n2

∑
ij

(Pij − P̂ij)2 → 0 as n→ ∞, w.h.p..

▶ But convergence in this norm is too weak. We need
convergence in∞-norm.

▶ Wemodify neighborhood smoothing and analyze.

Theorem
The modified neighborhood smoothing estimator for P is
consistent in∞-norm.
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Corollary
Performing single linkage on the modified neighborhood
smoothing estimate of P is a consistent graphon clustering method.
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Summary

Question 1: What is the “correct” clustering of a graphon?
Answer: The graphon cluster tree or, equivalently, the mergeon.

Question 2: What does it mean to recover the “correct” clustering?
Answer: Convergence in merge distortion to graphon cluster tree.

Question 3: How do we recover the correct clustering?
Answer: Modified neighborhood smoothing+ single linkage
clustering.
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http://web.cse.ohio-state.edu/~eldridge/

http://web.cse.ohio-state.edu/~eldridge/
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Weak isomorphism
▶ Any graphonW defines a graph distribution.
▶ Not uniquely! Many graphons define the same distribution.
▶ The distribution is uniquely determined up to relabeling of W.

Definition
Ameasure preserving transformation (i.e., graphon relabeling)
φ : [0, 1]→ [0, 1] is a Lebesgue-measurable function whose
preimage preserves measure. That is, µ(φ−1(A)) = µ(A) for all
measurable A ⊂ [0, 1].
Notation: Wφ(x, y) = W(φ(x), φ(y)).
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Weak isomorphism
▶ Any graphonW defines a graph distribution.
▶ Not uniquely! Many graphons define the same distribution.
▶ The distribution is uniquely determined up to relabeling of W.

Definition
Ameasure preserving transformation (i.e., graphon relabeling)
φ : [0, 1]→ [0, 1] is a Lebesgue-measurable function whose
preimage preserves measure. That is, µ(φ−1(A)) = µ(A) for all
measurable A ⊂ [0, 1].
Notation: Wφ(x, y) = W(φ(x), φ(y)).
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Weak isomorphism
▶ Any graphonW defines a graph distribution.
▶ Not uniquely! Many graphons define the same distribution.
▶ The distribution is uniquely determined up to relabeling of W.

Definition
Ameasure preserving transformation (i.e., graphon relabeling)
φ : [0, 1]→ [0, 1] is a Lebesgue-measurable function whose
preimage preserves measure. That is, µ(φ−1(A)) = µ(A) for all
measurable A ⊂ [0, 1].
Notation: Wφ(x, y) = W(φ(x), φ(y)).

φ(x) =

x+ 1/2 x ≤ 1/2,

x − 1/2 x > 1/2
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Weak isomorphism
▶ Any graphonW defines a graph distribution.
▶ Not uniquely! Many graphons define the same distribution.
▶ The distribution is uniquely determined up to relabeling of W.

Definition
Ameasure preserving transformation (i.e., graphon relabeling)
φ : [0, 1]→ [0, 1] is a Lebesgue-measurable function whose
preimage preserves measure. That is, µ(φ−1(A)) = µ(A) for all
measurable A ⊂ [0, 1].
Notation: Wφ(x, y) = W(φ(x), φ(y)).

φ(x) = 2x mod 1



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Weak isomorphism

Definition (Lovász)
Two graphons W1 and W2 are weakly isomorphic if there exist
measure preserving transformations φ1 and φ2 such that
Wφ11

a.e.
= Wφ22 .

▶ W1 andW2 define the same distribution iff they are weakly
isomorphic.

W

Weakly
isomorphic

≡
Define
same

distribution

Wφ, φ = 2x mod 1
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Weak isomorphism

Definition (Lovász)
Two graphons W1 and W2 are weakly isomorphic if there exist
measure preserving transformations φ1 and φ2 such that
Wφ11

a.e.
= Wφ22 .

▶ W1 andW2 define the same distribution iff they are weakly
isomorphic.

W

Weakly
isomorphic

≡
Define
same

distribution

Wφ, φ = 2x mod 1
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The clusters of a graphon

1. Collect all subsets of [0, 1]which should be clustered at λ:

Aλ = {A ⊂ [0, 1] : µ(A) > 0 and A is connected ∀ λ′ < λ.}

2. If A1,A2,A ∈ Aλ, and A1 ∪ A2 ⊂ A, then A1,A2, and A should all
be in the same cluster at λ. Consider them equivalent.

▶ Define equivalence relation on Aλ:

A1�λ A2 ⇐⇒ ∃A ∈ Aλ,A ⊃ A1 ∪ A2.

▶ Read: A1 is clustered with A2 at level λ.
▶ �λ partitions Aλ into equivalence classes of sets which should
be in the same cluster.
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The clusters of a graphon
3. Define clusters to be “largest” element of each equivalence

class.
▶ Subtlety in defining “largest”:

▶ Suppose A ∈ Aλ/�λ is such an equivalence class.
▶ Let A be any representative from A , let Z be a set of zero

measure.
▶ A′ = A ∪ Z is a representative of A .

▶ In general there is no representative of A which strictly
contains all other representatives in A

▶ We can find reps. which contain every other rep. up to a null
set, called the “essential maxima” of A :

essmaxA = {A ∈ A : ∀A′ ∈ A , µ(A′ \ A) = 0}

▶ The clusters of W at level λ are the essential maxima of each
equivalence class:

CW(λ) = {essmaxA : A ∈ Aλ/�λ.}
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Consistent algorithms

▶ Intuitively, estimating the graphon is related to clustering.
▶ It suffices to estimate the so-called edge probability matrix.

x1x4 x5 x6x2x3

x1

x4

x5

x6

x2

x3

W

x1 x4 x5 x6x2 x3

x1

x4

x5

x6

x2

x3

P : Pij = W(xi, xj)
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Consistent algorithms

▶ Intuitively, estimating the graphon is related to clustering.
▶ It suffices to estimate the so-called edge probability matrix.

x1x4 x5 x6x2x3

x1

x4

x5

x6

x2

x3

W P : Pij = W(xi, xj)
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Consistent algorithms

▶ Intuitively, estimating the graphon is related to clustering.
▶ It suffices to estimate the so-called edge probability matrix.

x1x4 x5 x6x2x3

x1

x4

x5

x6

x2

x3

W

x1x4 x5 x6x2x3

x1

x4

x5

x6

x2

x3

P (artificially permuted)
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Sample an adjacency matrix A from P:

x1x4 x5 x6x2x3

x1

x4

x5

x6

x2

x3

W

x1x4 x5 x6x2x3

x1

x4

x5

x6

x2

x3

P
(artificially permuted)

x1x4 x5 x6x2x3

x1

x4

x5

x6

x2

x3

A
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Sample an adjacency matrix A from P:

x1x4 x5 x6x2x3

x1

x4

x5

x6

x2

x3

W

x1x4 x5 x6x2x3

x1

x4

x5

x6

x2

x3

P
(artificially permuted)

x1x4 x5 x6x2x3

x1

x4

x5

x6

x2

x3

A

A is a poor estimate of P.
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n = 8

P A



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

n = 16

P A
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n = 32

P A



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

n = 64

P A
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n = 128

P A
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n = 256

P A
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Edge probability estimation

Goal: Compute estimated edge probabilities P̂ from A.

P A P̂
Theorem
If ∥P − P̂∥∞ → 0 in probability as n→ ∞, then single linkage
clustering on P̂ is a consistent clustering method.

▶ We need a suitable estimator P̂ of edge probabilities.
▶ Recently, Zhang et al. (2015) proposed neighborhood
smoothing.
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Edge probability estimation

Goal: Compute estimated edge probabilities P̂ from A.

P A P̂
Theorem
If ∥P − P̂∥∞ → 0 in probability as n→ ∞, then single linkage
clustering on P̂ is a consistent clustering method.

▶ We need a suitable estimator P̂ of edge probabilities.
▶ Recently, Zhang et al. (2015) proposed neighborhood
smoothing.
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Neighborhood smoothing

Given A, the adjacency matrix of a sampled graph...
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Neighborhood smoothing

Consider a node i and its corresponding column of A.
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Neighborhood smoothing
j 

Measure similarity to every other node j:
d(i, j) = maxk,i,j

∣∣∣(A2)ik − (A2)jk
∣∣∣
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Neighborhood smoothing

Form neighborhood Ni of nodes most similar to i.
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Neighborhood smoothing

Average within neighborhood to estimate edge probability:
P̂ij = 1

2|Ni |
∑

i′∈Ni Ai′j +
1

2|Nj |
∑

j′∈Nj Aij′
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Neighborhood smoothing

The result is a smoothed estimate P̂ of edge probabilities.


