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machine learning
without a teacher

» Ateacher’s time is expensive.
» Ateacher may not exist.
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Treat image as a vector in R784,
project to R? using principal components.
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Treat image as a vector in R784,
project to R? using principal components.




The phenomenon of cluster structure allows learning without a teacher.
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Understanding cluster structure of social network
helps in preventing spread of infectious diseases.




Identify subtypes of cancer via clustering of DNA microarrays.




Clustering customers based on past purchases allows
accurate recommendation of new products.




We can recover the structure of data
without a teacher through clustering.




Problem: Different clustering methods recover different structures.

Algorithm 1 Algorithm 2
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Problem: Each method has own internal idea of the “correct” clustering.

Algorithm 1 Algorithm 2
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There is no “best” clustering method (no free lunch).
It is up to the user to pick an algorithm which matches their goals.

A theory of clustering:
» Formalize the goal: What is the correct clustering in this setting?
» What algorithm (if any) obtains it?

Without such a theory:
» Clustering is often ad hoc.
> Interpretation of clusters is unclear.



statistical theories of clustering.



Step 0: Model the data-generating process.

model
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Step 1: Define the ideal clusters of the model.
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Step 2: Define convergence to the ideal clusters.
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Step 2: Define convergence to the ideal clusters.
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Step 3: Identify algorithms which converge.
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In this view, a “correct” clustering method is one which converges.
)




Part I: Density

Beyond Hartigan Consistency @ COLT 2015
Awarded best student paper.

Part Il: Graphon

Graphons, mergeons, and so on! @ NIPS 2016
Awarded full oral presentation.

with Mikhail Belkin and Yusu Wang



Part I: Density

Beyond Hartigan Consistency @ COLT 2015
Awarded best student paper.

+ Well-studied since the 1960’s.
« Existing notion of clusters, convergence (Hartigan)
» Proving convergence of algorithms took 30 years.

+ We show that Hartigan’s notion is very weak.
« Introduce stronger notion of convergence.
» Prove that algorithms converge.



Part Il: Graphon

Graphons, mergeons, and so on! @ NIPS 2016
Awarded full oral presentation.

« Graph clustering.

+ Much of existing theory in, e.g., blockmodel.

» The graphon represents a much richer model.
» Graphon was clustering virtually unstudied.

« We define clusters of the graphon.

« Define a strong notion of convergence.

« Introduce a new graph clustering algorithm
» Prove its convergence.



Context

Approaches to “correct” clustering.



Applications & Directions



Context « Optimization

Approaches to “correct” clustering.
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In this view, the “correct” clustering is that which
optimizes the cost function.




k-Means-Cost(C)

> SzE(C)
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The “correct” clustering is that which minimizes the k-means cost.

Does an algorithm exist which obtains the correct clustering?

Optimization problem:
For fixed k, optimize k-Means-Cost over k-clusterings.
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The “correct” clustering is that which minimizes the k-means cost.

[ Does an algorithm exist which obtains the correct clustering?

Optimization problem:
For fixed k, optimize k-Means-Cost over k-clusterings.

{ Dasgupta (2009): NP-Hard, even for k = 2.

Approximation algorithm:
Lloyd’s method (a.k.a., the k-means algorithm)



The “correct” clustering is that which minimizes the k-means cost.

[ Does an algorithm exist which obtains the correct clustering?

Optimization problem:
For fixed k, optimize k-Means-Cost over k-clusterings.

{ Dasgupta (2009): NP-Hard, even for k = 2. J

Approximation algorithm:
Lloyd’s method (a.k.a., the k-means algorithm)

Kanungo (2003): Unbounded approximation ratio. ]




Advantages of optimization approach:
» Some clustering tasks are naturally quantifiable: e.g., compression.
» Straightforward to incorporate constraints.
» Easy to compare different clusterings of the same data.
» Use well-weathered machinery of optimization.

Disadvantages:
» Common cost functions are NP-Hard to optimize.
» Unclear how the optimum relates to data-generation process.



Context

Approaches to “correct” clustering.

« Axiomatic



Idea: establish rules (axioms) for the behavior of clustering methods.

In this view, a “correct” clustering is one produced by
an algorithm which obeys the axioms.




Idea: establish rules (axioms) for the behavior of clustering methods.

In this view, a “correct” clustering is one produced by
an algorithm which obeys the axioms.

J. Kleinberg (2003) studied three axioms:

1. scale-invariance
2. consistency
3. richness



J. Kleinberg’s consistency axiom



J. Kleinberg’s consistency axiom



Three natural clustering axioms:
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J. Kleinberg (2003): a method satisfying all three is impossible.




Three natural clustering axioms:

1. scale-invariance
2. consistency
3. richness

J. Kleinberg (2003): a method satisfying all three is impossible.

For positive results, see:

» (Ben-Davis & Ackerman, 2009)
» (Carlsson & Mémoli, 2010)



Advantages of axiomatic approach:
» Can be useful when stability is important.
» Or when certain invariances must hold.
» Better understand all methods by which axioms they fail to satisfy.

Disadvantages:
» |Impossibility result.
» Unclear how axioms relate to data-generation process.



Context

Approaches to “correct” clustering. « Statistical



A statistical approach to clustering.
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Advantages of statistical theories:
» Clusters have explicit interpretation w.r.t. the model.
» Can talk about statistical significance of clusters.
» Encode domain knowledge within model.
» (Often) tractable.

(Potential) disadvantages:
» Model must be rich enough to describe reality.
» But it can be difficult to develop theory in a rich model.



Part [: DenSity « Existing theory of Hartigan consistency

Beyond Hartigan Consistency @ COLT 2015
Awarded best student paper.



Identify subtypes of cancer via clustering of DNA microarrays.




Clustering in the density model.

model

data



Clustering in the density model.

model ideal clusters
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Step 1: What are the clusters of the density?

model ideal clusters

_ ?
/\/\ 1) define? *
J sample I 2) converge?

. 3) cluster?

data data clusters



Intuition: a cluster is a region of high probability.



Connected component of {f > A;}?




Connected component of {f > 1,}?




Connected component of {f > A3}?




Hartigan (1981): A cluster is a connected component of {f > A},
forany 4 > 0.




Hartigan (1981): A cluster is a connected component of {f > A},
forany 4 > 0.




Clusters form the density cluster tree of f.




Natural goal of clustering in the density model:
recover the density cluster tree.




The density cluster tree is the ideal clustering.

model ideal clusters

. 3) cluster?

data data clusters



Step 2: How do we define convergence to the density cluster tree?

model ideal clusters

. 3) cluster?

data data clusters



Need a formal notion of convergence to the density cluster tree.

Sample n points from density. ]




Need a formal notion of convergence to the density cluster tree.

\ N

l Apply hierarchical clustering algorithm.




Need a formal notion of convergence to the density cluster tree.




Need a formal notion of convergence to the density cluster tree.



Need a formal notion of convergence to the density cluster tree.




Need a formal notion of convergence to the density cluster tree.




xq

Hartigan (1981): In the limit, clusters disjoint in true tree should be
disjoint in empirical tree.




Find A, := the smallest empirical cluster containing A N X,,.
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Find B, := the smallest empirical cluster containing B N X,.
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Hartigan consistency: Asn — oo, Pr(A, is disjoint from B,) — 1.

as
a9 b3
h
a(®A,, B, 2
1
)
x1




Hartigan consistency: Asn — oo, Pr(A, is disjoint from B,) — 1.

as
a9 b3
aq ba
b1
X2
x1




Hartigan consistency: Asn — oo, Pr(A, is disjoint from B,) — 1.

as
a9 b3
aq ba
b1
X2
x1




Hartigan consistency: Asn — oo, Pr(A, is disjoint from B,) — 1.

as
a9 b3
al 22
1
AN 2
Z1




Hartigan consistency: Asn — oo, Pr(A, is disjoint from B,) — 1.

as
a9 b3
aq ba
1
X2 Bn




Hartigan consistency: Asn — oo, Pr(A, is disjoint from B,) — 1.
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Hartigan consistency is a notion of convergence.
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Step 3: Does a Hartigan consistent algorithm exist?

model ideal clusters
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Hartigan (1981) analyzed single-linkage clustering.

Given a weighted graph:

1 1 2
o O O O

Clusters are components of “sub-level graphs”:

1. Fix level 4, cut all edges of weight > A.
2. Clusters at level A are the connected components.



Hartigan (1981) analyzed single-linkage clustering.

Given a weighted graph:
1 1 2
@ @ @ O

Clusters are components of “sub-level graphs”:

1. Fix level 4, cut all edges of weight > A.
2. Clusters at level A are the connected components.

A<1



Hartigan (1981) analyzed single-linkage clustering.

Given a weighted graph:
1 1 2
@©+©@*© ©

Clusters are components of “sub-level graphs”:

1. Fix level 4, cut all edges of weight > A.
2. Clusters at level A are the connected components.

A<1



Hartigan (1981) analyzed single-linkage clustering.

Given a weighted graph:

O———0O——0 : O

Clusters are components of “sub-level graphs”:

1. Fix level 4, cut all edges of weight > A.
2. Clusters at level A are the connected components.



Hartigan (1981) analyzed single-linkage clustering.

Given a weighted graph:

Clusters are components of “sub-level graphs”:

1. Fix level 4, cut all edges of weight > A.
2. Clusters at level A are the connected components.



Hartigan (1981) analyzed single-linkage clustering.

Given a weighted graph:

1 1 2
O O O O

Clusters are components of “sub-level graphs”:

1. Fix level 4, cut all edges of weight > A.
2. Clusters at level A are the connected components.

2<A



Hartigan (1981) analyzed single-linkage clustering.

Given a weighted graph:

e —

Clusters are components of “sub-level graphs”:

1. Fix level 4, cut all edges of weight > A.
2. Clusters at level A are the connected components.

2<A



(1981): Single-linkage is not Hartigan consistent.
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(1981): Single-linkage is not* Hartigan consistent.

30 years pass...

Proven Hartigan consistent:

(2010): Robust single-linkage of Chaudhuri & Dasgupta
(2011): Tree pruning of Kpotufe & von Luxburg

*In dimensions > 1.



Robust single-linkage of Chaudhuri & Dasgupta:

1. Fix level 4, cut all edges of weight > aA.
2. Remove low density nodes.
3. Clusters at level A are the connected components.



Robust single-linkage of Chaudhuri & Dasgupta:

1. Fix level 4, cut all edges of weight > aA.
2. Remove low density nodes.
3. Clusters at level A are the connected components.

Chaudhuri & Dasgupta (2010) prove Hartigan consistency.



Robust single-linkage converges.
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Part I: Density

Beyond Hartigan Consistency @ COLT 2015
Awarded best student paper.

« The weakness of Hartigan’s notion



Hartigan consistency is insufficient

Hartigan lacks a strong notion of connectedness.
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Hartigan consistency is insufficient

Hartigan lacks a strong notion of connectedness.
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Hartigan consistency is insufficient

This tree does not violate Hartigan consistency!
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Hartigan consistency is insufficient

This tree does not violate Hartigan consistency!




Hartigan consistency is insufficient

This tree does not violate Hartigan consistency!




Hartigan consistency is insufficient

What about this tree?




Hartigan consistency is insufficient
What about this tree? Also consistent!
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Hartigan consistency is insufficient
A tree can be Hartigan consistent yet very different from the true tree.
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Part I: Density

Beyond Hartigan Consistency @ COLT 2015

Awarded best student paper. « Our strong notion of convergence



Hartigan consistency lacks minimality.

Suppose Cis a cluster at level A.
Cn should not contain points of density much less than A.
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Hartigan consistency lacks minimality.

Definition (Eldridge, 2015):

Minimality: For cluster C at level A, minyec, f(X) > A — dwith§ — 0.
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Hartigan consistency lacks minimality.

Definition (Eldridge, 2015):

Minimality: For cluster C at level A, minyec, f(X) > A — dwith§ — 0.
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Definition (Eldridge, 2015):

Separation: If A and B are disjoint clusters merging at u,
AN X, and B N X, are separated at level 4 + &, withé — 0.
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Definition (Eldridge, 2015):

Separation: If A and B are disjoint clusters merging at u,
AN X, and B N X, are separated at level 4 + &, withé — 0.

as
Z)Q
@1,[4\(12 /B\bl l\\ ,Ibz
/ \ \on
i) T9
.CC/ \ 1

Cf éf,n




Definition (Eldridge, 2015):
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Definition (Eldridge, 2015):

Separation: If A and B are disjoint clusters merging at u,
AN X, and B N X, are separated at level 4 + &, withé — 0.
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Theorem (Eldridge, 2015):

Minimality + Separation = Hartigan consistency
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Theorem (Eldridge, 2015):

Minimality + Separation = Hartigan consistency

‘ Hartigan consistency =~ Minimality + Separation

Minimality and Separation are limit properties.
Can we quantify how close a clustering is to the density cluster tree?
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» Theideal merge height: m(a, b)
» The empirical merge height: m(a, b)
» Minimality + Separation = m(a, b) — m(a, b)
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» Theideal merge height: m(a, b)
» The empirical merge height: m(a, b)
» Minimality + Separation = m(a, b) — m(a, b)
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Definition (Eldridge, 2015):

The merge distortion between the cluster tree and its estimate is
d(Cr. Crn) = max(eyex, M6 x") — rﬁ(x,x’)|.




Theorem (Eldridge, 2015):

Convergence in merge distortion <= Minimality + Separation

Corollary (Eldridge, 2015):

Convergence in merge distortion = Hartigan consistency




Theorem (Eldridge, 2015):

Convergence in merge distortion <= Minimality + Separation

Corollary (Eldridge, 2015):

Convergence in merge distortion = Hartigan consistency

[Hartigan consistency =~ convergence in merge distortion. ]




Merge distortion is stronger than Hartigan consistency.
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Step 3: Does an algorithm exist which converges in merge distortion?
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It took 30 years to prove Hartigan consistency...



It took 30 years to prove Hartigan consistency...

Theorem (Eldridge, 2015):

Assume the density fis Lipschitz and compactly supported.
Then robust single-linkage converges in merge distortion
to the density cluster tree.




A theory of convergence in merge distortion.
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Part I: Density

Beyond Hartigan Consistency @ COLT 2015
Awarded best student paper.

Recap:

+ Hartigan consistency was too weak

« We replaced it with minimality and separation
« Introduced distance between clusterings

« Our notion of convergence is stronger

+ We prove that robust single-linkage converges



« Background: stochastic blockmodel

Part Il: Graphon

Graphons, mergeons, and so on! @ NIPS 2016
Awarded full oral presentation.
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Example goal: recover communities in a social network.
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Background: the stochastic blockmodel.

» Each graph node belongs to one of k blocks, or communities.
» Edge probabilities parameterized by symmetric k x k matrix P:
> Prob. of edge between communities / and j given by P;;.

» Example: 2-block model.
» Social network of girls and boys at a school.
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Sampling from a blockmodel.

We can generate a random graph with n nodes from P as follows...
1. Sample communities uniformly with replacement.
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Sampling from a blockmodel.

We can generate a random graph with n nodes from P as follows...
1. Sample communities uniformly with replacement.
2. Sample edges with probability according to P.
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Sampling from a blockmodel.

We can generate a random graph with n nodes from P as follows...
1. Sample communities uniformly with replacement.
2. Sample edges with probability according to P.
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Repeat for all
pairs of nodes.



Sampling from a blockmodel.

We can generate a random graph with n nodes from P as follows...
1. Sample communities uniformly with replacement.
2. Sample edges with probability according to P.

3. Forget community labels.
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Clustering in the stochastic blockmodel.

model ideal clusters
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Part ” Graphon » The graphon model

Graphons, mergeons, and so on! @ NIPS 2016
Awarded full oral presentation.



Problem: Many real-world networks not well-fit by blockmodel.

» Large networks (Facebook, LinkedIn, etc.) are complicated.
» The 2-blockmodel is very simple.
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Problem: Many real-world networks not well-fit by blockmodel.

» Large networks (Facebook, LinkedIn, etc.) are complicated.
» The 2-blockmodel is very simple.
» Solution: Increase number of parameters, i.e., communities...
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The limit of a blockmodel is...
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The limit of a blockmodel is...

lim' [==

k— o0

...a graphon!
symmetric
- function W :
[0,1]? — [0,1]

T Convergence in so-called cut metric, (Lovasz, 2012).



Interpretation: The adjacency of an infinite weighted graph.




Interpretation: The adjacency of an infinite weighted graph.

Graphon “nodes” are points x, y € [0, 1].
X y




Interpretation: The adjacency of an infinite weighted graph.

W(x, y) is the weight of the “edge” (x, y).




Sampling a graph from W.

Graphon sampling is analogous to sampling from a blockmodel.




Sampling a graph from W.

First, sample n graphon nodes, i.e., points from Unif|0, 1].
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Sampling a graph from W.

First, sample n graphon nodes, i.e., points from Unif|0, 1].
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Sampling a graph from W.

First, sample n graphon nodes, i.e., points from Unif|0, 1].

X2 X5 X1 X4 X3 Xe




Sampling a graph from W.
Include edge (x1, X5 ) with probability W(x1, Xs).

X2 X5 X1 X4 X3 Xe




Sampling a graph from W.

By chance, edge (x1, xs) is included.

X2 X5 X1 X4 X3 Xe




Sampling a graph from W.
Include edge (X3, Xg ) with probability W(x3, xs).

X2 X5 X1 X4 X3 Xe




Sampling a graph from W.

By chance, edge (x3, X ) is omitted.

X2 X5 X1 X4 X3 Xe




Sampling a graph from W.

Repeat for all possible edges.

X2 X5 X1 X4 X3 Xe




Sampling a graph from W.
Forget node labels, obtaining undirected & unweighted graph.

X2 X5 X1 X4 X3 Xe

O




Sampled graphs converge to the graphon they were sampled from.
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Sampled graphs converge to the graphon they were sampled from.
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Sampled graphs converge to the graphon they were sampled from.
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Sampled graphs converge to the graphon they were sampled from.




A graphon W defines a very rich distribution on graphs.

» Better models real-world data (Hoff, 2002).
» Subsumes many models, e.g., blockmodel:



A graphon W defines a very rich distribution on graphs.

» Better models real-world data (Hoff, 2002).
» Subsumes many models, e.g., blockmodel:

Warning! Graphons can be much more complex than blockmodels.

» Present several unique and subtle technical issues.



Issue 1: A graphon is truly a measure-theoretic object.

$ grep -i 'measur' nips-2016_paper/**.tex
200

$ grep -i 'measur' this_talk/#**.tex
3

We will ignore this in the interest of the exposition.



As with finite graphs, we have a notion of graphon isomorphism.

(Lovasz, 2012): W, and W, define the same random graph model
=
they are equivalent up to relabeling,

Issue 2: In general, there is no canonical way to label the model.
Definitions must not strongly rely on particular labeling.




Part Il: Graphon

Graphons, mergeons, and so on! @ NIPS 2016
Awarded full oral presentation.

« The clusters of a graphon



Clustering in the graphon model was virtually unstudied.

model ideal clusters
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Step 1: Define the clusters of a graphon.

model ideal clusters

—

define

l sample T converge
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data data clusters



What are the clusters of a graphon?

We interpret the graphon as the adjacency of an infinite weighted graph.

oo




What are the clusters of a graphon?

Each link in this depiction corresponds to a region of the graphon.
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What are the clusters of a graphon?

Each link in this depiction corresponds to a region of the graphon.

oo




What are the clusters of a graphon?

» We define clusters to be connected components.
> Generalize graph connectivity, extends (Janson, 2008).
> In fact, we can speak of the clusters at various levels.




What are the clusters of a graphon?

» Intuition: Two graphon nodes are connected at level A if there is a
path between them along which each edge has weight > 1.

» Three clusters (connected components) at level 1.
> Any pair (0, ©) are in same cluster at A3. Same for (0, ©) & (©, 0).

N\

A




What are the clusters of a graphon?

» Intuition: Two graphon nodes are connected at level A if there is a
path between them along which each edge has weight > 1.

> Intuitively: red and blue clusters merge at level A,.
> Any pair (0, ©) are in same cluster at A;.
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What are the clusters of a graphon?

» Intuition: Two graphon nodes are connected at level A if there is a
path between them along which each edge has weight > 1.

> All clusters merge at level ;.

A1
A2
A 1 /ll

A1




A

A3

A2

A1

We call this structure the graphon cluster tree.

Recovering the graphon cluster tree is a natural
goal of clustering in the graphon setting.




We introduce a special function M which we call the mergeon.

A3

A2

A1

M(x, y) encodes the height at which points x and y
merge in the graphon cluster tree.



Theorem (Eldridge, 2016):

If graphons W; and W, are the same up to relabeling, then
their mergeons and cluster trees are the same up to relabeling.

Cg/

Surprisingly non-trivial to show.




The ideal clusters form the graphon cluster tree.

model ideal clusters
N O
graphon
cluster tree
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data data clusters




Step 2: Define convergence to the graphon cluster tree.

model ideal clusters
BN I
graphon
cluster tree
converge

cluster w

data data clusters




Part Il: Graphon

Graphons, mergeons, and so on! @ NIPS 2016 + Merge distortion for graphons
Awarded full oral presentation.



The merge distortion

| L

C C’

How “close” are C and C’?



The merge distortion

It

C C’

Intuitively, corresponding pairs of nodes should merge at around the
same height in each tree.



The merge distortion
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Merge heights are encoded in the mergeon.



The merge distortion

M(@.®)
M(©.@)

C C’

Merge heights are encoded in the mergeon.



The merge distortion
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M@, @) - M (@, @)|isthe difference in merge height of @, @.



The merge distortion
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C C’

The merge distortion d(C, C’):
the maximum difference in merge height over all pairs, i.e,

d(C,C’) = &% M@, ®)-M (@, @),



The merge distortion

i
M@ @) |-

.0 L1
M(@ @) f---o--

C C’

We define consistency as convergence to the graphon cluster tree in the
merge distortion.



We have defined convergence in merge distortion for graphons.

model ideal clusters
mergeon
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Step 3: Does a clustering algorithm exist which converges?

model ideal clusters

mergeon
graphon
cluster tree
T merge distortion

—

cluster

data data clusters



Part Il: Graphon

Graphons, mergeons, and so on! @ NIPS 2016
Awarded full oral presentation. « Converging clustering methods



Estimating edge probabilities.

Suppose we sample a graph from this graphon.



Estimating edge probabilities.

Edges within communities have probability p;
edges across communities have probability g.

o
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Estimating edge probabilities.
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If we knew these edge probabilities we could recover the correct clusters.



Estimating edge probabilities.

But the edge probabilities are unknown and the presence/absence of an
edge (i, j) tells us little about its probability, Pj.



Estimating edge probabilities.

But the edge probabilities are unknown and the presence/absence of an
edge (i, j) tells us little about its probability, Pj.

Idea: Compute estimate P of edge probabilities from a single graph.



Let P be a matrix of estimated edge probabilities,
and let P be the true edge probabilities.

Theorem (Eldridge, 2016):

If max;; [P — Pjl —» 0 =
single-linkage on P converges to the graphon cluster tree.
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Let P be a matrix of estimated edge probabilities,
and let P be the true edge probabilities.

Theorem (Eldridge, 2016):

If max;; [P — Pjl —» 0 =
single-linkage on P converges to the graphon cluster tree.

There are many recent graphon edge probability estimators.
But all analyses are in aggregate error:

> ie., they allow a small # of edge probability estimates to be bad.
These results are too weak for our purposes.

We modify and analyze the neighborhood smoothing method of
(Zhang et al., 2015) to obtain consistency in max-norm.



Neighborhood smoothing
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Neighborhood smoothing
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Given this graph... estimate Pj.



Neighborhood smoothing

Build a neighborhood N; of nodes with similar connectivity to that of i.



Neighborhood smoothing

®
go 80
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> Average number edges from node in neighborhood N; to .
> Estimated edge probability: P;j = 2/6 = 1/3.

O



Theorem (Eldridge, 2016):

Our modified neighborhood smoothing edge probability estimator
for Pis consistent in max-norm.




Theorem (Eldridge, 2016):

Our modified neighborhood smoothing edge probability estimator
for Pis consistent in max-norm.

Corollary (Eldridge, 2016):
Consistent graphon clustering method:

1. Estimate edge probabilities with our modified neighborhood smoother.
2. Apply single-linkage clustering to estimated edge probabilities.




Clustering in the stochastic blockmodel.

model ideal clusters
mergeon
graphon

cluster tree

merge distortion

neighborhood
smoothing + S-L

data data clusters



Part Il: Graphon

Graphons, mergeons, and so on! @ NIPS 2016
Awarded full oral presentation.

« Examples



Example

graphon W

0.5

0.1

adjacency A estimated edge probs. P



Example

Our method: Neighborhood smoothing + single-linkage




Example

Neighborhood smoothing + single-linkage

Single linkage




Example

Network of college football games in 2001.

Each node is a team, an edge exists if teams played.
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Recap:
Part Il: Graphon « The graphon is a rich model
» Virtually unstudied w.rt. clustering
« Define clusters and convergence
» Prove nbhd. smoothing + S-L converges

Graphons, mergeons, and so on! @ NIPS 2016
Awarded full oral presentation.



Applications & Directions



Practical application: Choosing a clustering algorithm

» Goal: recover regions of high density
Example: Group customers according to previous purchases.
» Consider algorithms which converge to density cluster tree.
» Robust single-linkage.



Practical application: Choosing a clustering algorithm

» Goal: recover regions of high density
Example: Group customers according to previous purchases.
» Consider algorithms which converge to density cluster tree.
» Robust single-linkage.

» Goal: recover cluster structure of a graph
Example: Find communities in social network.
» Consider algorithms which converge to graphon cluster tree.
» Neighborhood smoothing + single-linkage.
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Practical application: Choosing a clustering algorithm

Goal: recover regions of high density
Example: Group customers according to previous purchases.

» Consider algorithms which converge to density cluster tree.
» Robust single-linkage.

Goal: recover cluster structure of a graph
Example: Find communities in social network.

» Consider algorithms which converge to graphon cluster tree.
» Neighborhood smoothing + single-linkage.

Quite likely that density/graphon is a good fit to data.
We guarantee strong convergence, no oversegmentation.
Naturally discuss statistical significance of clusters.



Practical application: Comparing clusterings quantitatively

» We'd often like to compare clusterings:

» When do we stop our iterative algorithm?
» How far are we from a partial clustering provided by a teacher?

» We provide the (efficiently computable) merge distortion:

A
VIX) * l
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Practical application: Visualizing high-dimensional densities

v

Often have high-dimensional data which we can’t simply plot.

v

Important aspects of data’s structure can be lost when projected.

v

Approach: Cluster by estimating the density cluster tree & visualize.
We have developed Denali? tree visualization software:

v

Zhttp://denali.cse.ohio-state.edu


http://denali.cse.ohio-state.edu

Direction: Formalizing correctness.

How do we combine approaches to formalizing clustering?

Optimization

Axiomatic
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Direction: Formalizing correctness.

How do we combine approaches to formalizing clustering?

Optimization

Statistical

Practical importance:

» Many popular clustering methods are not framed statistically.
» What do their clusters converge to?
» How do we interpret them?



Direction: Interactive clustering

How do we formalize correctness?



“correct” clustering



























