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Treat image as a vector inR784,
project toR2 using principal components.

The phenomenonof cluster structure allows learningwithout a teacher.







Understanding cluster structure of social network
helps in preventing spread of infectious diseases.



Identify subtypes of cancer via clustering of DNAmicroarrays.



Clustering customers based onpast purchases allows
accurate recommendation of newproducts.



Wecan recover the structure of data
without a teacher through clustering.
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Problem: Eachmethodhas own internal idea of the “correct” clustering.

Algorithm 1 Algorithm 2



There is no “best” clusteringmethod (no free lunch).
It is up to the user to pick an algorithmwhichmatches their goals.

A theory of clustering:
▶ Formalize the goal: What is the correct clustering in this setting?
▶ What algorithm (if any) obtains it?

Without such a theory:
▶ Clustering is often adhoc.
▶ Interpretation of clusters is unclear.



In this talk, we focus on

statistical theories of clustering.



Step 0: Model the data-generating process.
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Step 1: Define the ideal clusters of themodel.
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In this view, a “correct” clusteringmethod is onewhich converges.



Context
Approaches to “correct” clustering.

Part I: Density
BeyondHartiganConsistency@COLT 2015
Awardedbest student paper.

Part II: Graphon
Graphons,mergeons, and so on!@NIPS 2016
Awarded full oral presentation.
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Context
Approaches to “correct” clustering.

Part I: Density
BeyondHartiganConsistency@COLT 2015
Awardedbest student paper.

Part II: Graphon
Graphons,mergeons, and so on!@NIPS 2016
Awarded full oral presentation.

•Well-studied since the 1960’s.
• Existing notion of clusters, convergence (Hartigan)
• Proving convergence of algorithms took 30 years.

•We show thatHartigan’s notion is veryweak.
• Introduce stronger notion of convergence.
• Prove that algorithms converge.
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Approaches to “correct” clustering.

Part I: Density
BeyondHartiganConsistency@COLT 2015
Awardedbest student paper.

Part II: Graphon
Graphons,mergeons, and so on!@NIPS 2016
Awarded full oral presentation.

• Graph clustering.
• Much of existing theory in, e.g., blockmodel.
• The graphon represents amuch richermodel.
• Graphonwas clustering virtually unstudied.

•Wedefine clusters of the graphon.
• Define a strong notion of convergence.
• Introduce a newgraph clustering algorithm
• Prove its convergence.
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In this view, the “correct” clustering is thatwhich
optimizes the cost function.



k-Means-Cost(C)
=∑

C∈C
SSE(C)



The “correct” clustering is thatwhichminimizes the k-means cost.

Does an algorithmexistwhich obtains the correct clustering?

Optimization problem:
For fixed k, optimize k-Means-Costover k-clusterings.



The “correct” clustering is thatwhichminimizes the k-means cost.

Does an algorithmexistwhich obtains the correct clustering?

Optimization problem:
For fixed k, optimize k-Means-Costover k-clusterings.

Dasgupta (2009): NP-Hard, even for k = 2.



The “correct” clustering is thatwhichminimizes the k-means cost.

Does an algorithmexistwhich obtains the correct clustering?

Optimization problem:
For fixed k, optimize k-Means-Costover k-clusterings.

Dasgupta (2009): NP-Hard, even for k = 2.



The “correct” clustering is thatwhichminimizes the k-means cost.

Does an algorithmexistwhich obtains the correct clustering?

Optimization problem:
For fixed k, optimize k-Means-Costover k-clusterings.

Dasgupta (2009): NP-Hard, even for k = 2.

Approximation algorithm:
Lloyd’smethod (a.k.a., the k-means algorithm)



The “correct” clustering is thatwhichminimizes the k-means cost.

Does an algorithmexistwhich obtains the correct clustering?

Optimization problem:
For fixed k, optimize k-Means-Costover k-clusterings.

Dasgupta (2009): NP-Hard, even for k = 2.

Approximation algorithm:
Lloyd’smethod (a.k.a., the k-means algorithm)

Kanungo (2003): Unbounded approximation ratio.



Advantages of optimization approach:
▶ Some clustering tasks are naturally quantifiable: e.g., compression.
▶ Straightforward to incorporate constraints.
▶ Easy to compare different clusterings of the samedata.
▶ Usewell-weatheredmachinery of optimization.

Disadvantages:
▶ Common cost functions areNP-Hard to optimize.
▶ Unclear how the optimum relates to data-generation process.
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J. Kleinberg (2003) studied three axioms:

1. scale-invariance
2. consistency
3. richness
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Three natural clustering axioms:

1. scale-invariance
2. consistency
3. richness

J. Kleinberg (2003): amethod satisfying all three is impossible.

For positive results, see:

▶ (Ben-Davis & Ackerman, 2009)
▶ (Carlsson&Mémoli, 2010)



Advantages of axiomatic approach:
▶ Canbe usefulwhen stability is important.
▶ Orwhen certain invariancesmust hold.
▶ Better understand allmethods bywhich axioms they fail to satisfy.

Disadvantages:
▶ Impossibility result.
▶ Unclear howaxioms relate to data-generation process.
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A statistical approach to clustering.
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Advantages of statistical theories:
▶ Clusters have explicit interpretationw.r.t. themodel.
▶ Can talk about statistical significance of clusters.
▶ Encode domain knowledgewithinmodel.
▶ (Often) tractable.

(Potential) disadvantages:
▶ Modelmust be rich enough to describe reality.
▶ But it can be difficult to develop theory in a richmodel.
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Identify subtypes of cancer via clustering of DNAmicroarrays.
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Step 1: What are the clusters of the density?
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Intuition: a cluster is a region of high probability.

f



Connected component of {f ≥ λ1}?
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Connected component of {f ≥ λ2}?
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Connected component of {f ≥ λ3}?
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Hartigan (1981): A cluster is a connected component of {f ≥ λ},
for any λ > 0.
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Clusters form the density cluster tree of f.
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Clusters form the density cluster tree of f.

f

Natural goal of clustering in the densitymodel:
recover the density cluster tree.



The density cluster tree is the ideal clustering.
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Step 2: Howdowedefine convergence to the density cluster tree?
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Need a formal notion of convergence to the density cluster tree.

Sample npoints fromdensity.



Need a formal notion of convergence to the density cluster tree.

Apply hierarchical clustering algorithm.
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Need a formal notion of convergence to the density cluster tree.

As n→ ∞...



Hartigan (1981): In the limit, clusters disjoint in true tree should be
disjoint in empirical tree.



Find An := the smallest empirical cluster containing A ∩ Xn.



FindBn := the smallest empirical cluster containingB ∩ Xn.
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Hartigan consistency: As n→ ∞,Pr(An is disjoint fromBn)→ 1.

✓



Hartigan consistency is a notion of convergence.
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Step 3: Does aHartigan consistent algorithmexist?
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Hartigan (1981) analyzed single-linkage clustering.

Given aweighted graph:
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Clusters are components of “sub-level graphs”:

1. Fix level λ, cut all edges ofweight> λ.
2. Clusters at level λ are the connected components.
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Given aweighted graph:
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Clusters are components of “sub-level graphs”:
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(1981): Single-linkage is not* Hartigan consistent.

30 years pass...

ProvenHartigan consistent:

(2010): Robust single-linkage of Chaudhuri &Dasgupta
(2011): Tree pruning of Kpotufe & von Luxburg

*In dimensions> 1.



Robust single-linkage of Chaudhuri &Dasgupta:

1. Fix level λ, cut all edges ofweight> αλ.
2. Remove lowdensity nodes.

3. Clusters at level λ are the connected components.



Robust single-linkage of Chaudhuri &Dasgupta:

1. Fix level λ, cut all edges ofweight> αλ.
2. Remove lowdensity nodes.

3. Clusters at level λ are the connected components.

Chaudhuri &Dasgupta (2010) proveHartigan consistency.



Robust single-linkage converges.
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Hartigan consistency is insufficient

This tree does not violateHartigan consistency!

✓



Hartigan consistency is insufficient

What about this tree?



Hartigan consistency is insufficient

What about this tree? Also consistent!

✓



Hartigan consistency is insufficient

A tree can beHartigan consistent yet very different from the true tree.

✓
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Hartigan consistency lacksminimality.

SupposeC is a cluster at level λ.
Cn should not contain points of densitymuch less than λ.
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{
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Theorem (Eldridge, 2015):

Minimality + Separation =⇒ Hartigan consistency

Hartigan consistency ≠⇒ Minimality + Separation

Minimality and Separation are limit properties.
Canwequantifyhowclose a clustering is to the density cluster tree?
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▶ The empiricalmerge height: m̂(a, b)
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▶ The empiricalmerge height: m̂(a, b)
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Definition (Eldridge, 2015):

Themerge distortion between the cluster tree and its estimate is
d(Cf, Ĉf,n) = max(x,x′)∈Xn

∣∣∣m(x, x′) − m̂(x, x′)
∣∣∣.
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Theorem (Eldridge, 2015):

Convergence inmerge distortion⇐⇒Minimality + Separation

Corollary (Eldridge, 2015):

Convergence inmerge distortion =⇒ Hartigan consistency

Hartigan consistency ≠⇒ convergence inmerge distortion.



Merge distortion is stronger thanHartigan consistency.
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Step 3: Does an algorithmexistwhich converges inmerge distortion?
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It took 30 years to proveHartigan consistency...



It took 30 years to proveHartigan consistency...

Theorem (Eldridge, 2015):

Assume the density f is Lipschitz and compactly supported.
Then robust single-linkage converges inmerge distortion
to the density cluster tree.



A theory of convergence inmerge distortion.
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Applications &Directions

Recap:
• Hartigan consistencywas tooweak
•We replaced itwithminimality and separation
• Introduceddistance between clusterings
• Our notion of convergence is stronger
•Weprove that robust single-linkage converges
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BeyondHartiganConsistency@COLT 2015
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•Merge distortion for graphons
• Converging clusteringmethods
• Examples







Example goal: recover communities in a social network.
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data data clusters
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Background: the stochastic blockmodel.

▶ Each graphnodebelongs to one of kblocks, or communities.
▶ Edge probabilities parameterized by symmetric k × kmatrixP:

▶ Prob. of edge between communities i and j given byPi j.
▶ Example: 2-blockmodel.

▶ Social network of girls and boys at a school.




P



Sampling fromablockmodel.
Wecan generate a randomgraphwith nnodes fromP as follows...
1. Sample communities uniformlywith replacement.

2. Sample edgeswith probability according toP.
3. Forget community labels.
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Context
Approaches to “correct” clustering.

Part I: Density
BeyondHartiganConsistency@COLT 2015
Awardedbest student paper.

Part II: Graphon
Graphons,mergeons, and so on!@NIPS 2016
Awarded full oral presentation.

Applications &Directions

• Background: stochastic blockmodel
• The graphonmodel
• The clusters of a graphon
•Merge distortion for graphons
• Converging clusteringmethods
• Examples



Problem: Many real-world networks notwell-fit by blockmodel.

▶ Large networks (Facebook, LinkedIn, etc.) are complicated.
▶ The 2-blockmodel is very simple.

▶ Solution: Increasenumberof parameters, i.e., communities...
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†

†Convergence in so-called cutmetric, (Lovász, 2012).



Interpretation: The adjacency of an infiniteweighted graph.



Interpretation: The adjacency of an infiniteweighted graph.
Graphon “nodes” are points x, y ∈ [0, 1].
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Interpretation: The adjacency of an infiniteweighted graph.
W(x, y) is theweight of the “edge” (x, y).
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Sampling a graph fromW.
Graphon sampling is analogous to sampling fromablockmodel.
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Sampling a graph fromW.
First, sample n graphonnodes, i.e., points fromUnif[0, 1].
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Sampling a graph fromW.
Include edge (x1, x5)with probabilityW(x1, x5).
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Sampling a graph fromW.
By chance, edge (x1, x5) is included.
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Sampling a graph fromW.
Include edge (x3, x6)with probabilityW(x3, x6).
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Sampling a graph fromW.
By chance, edge (x3, x6) is omitted.
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Sampling a graph fromW.
Repeat for all possible edges.
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Sampling a graph fromW.
Forget node labels, obtaining undirected&unweighted graph.
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Sampled graphs converge to the graphon theywere sampled from.
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Sampled graphs converge to the graphon theywere sampled from.



A graphonWdefines a very rich distribution on graphs.
▶ Bettermodels real-world data (Hoff, 2002).
▶ Subsumesmanymodels, e.g., blockmodel:

p1 q

q p2

≡
p1 q

q p2
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Warning! Graphons canbemuchmore complex thanblockmodels.

▶ Present several unique and subtle technical issues.



Issue 1: A graphon is truly ameasure-theoretic object.

$ grep -i 'measur' nips-2016_paper/**.tex
200
$ grep -i 'measur' this_talk/**.tex
3

Wewill ignore this in the interest of the exposition.



Aswith finite graphs,we have a notion of graphon isomorphism.

≡

(Lovász, 2012):W1 andW2 define the same randomgraphmodel
⇐⇒

they are equivalent up to relabeling.

Issue 2: In general, there is no canonicalway to label themodel.
Definitionsmust not strongly rely on particular labeling.



Context
Approaches to “correct” clustering.

Part I: Density
BeyondHartiganConsistency@COLT 2015
Awardedbest student paper.

Part II: Graphon
Graphons,mergeons, and so on!@NIPS 2016
Awarded full oral presentation.

Applications &Directions

• Background: stochastic blockmodel
• The graphonmodel
• The clusters of a graphon
•Merge distortion for graphons
• Converging clusteringmethods
• Examples



Clustering in the graphonmodelwas virtually unstudied.

data

model

data clusters

ideal clusters

?

?

sample converge

define

cluster



Step 1: Define the clusters of a graphon.
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What are the clusters of a graphon?

We interpret the graphon as the adjacency of an infiniteweighted graph.

λ2

λ1

λ1 λ1

λ3 λ3

λ3

λ3

λ3

λ3

λ2
λ1



What are the clusters of a graphon?

Each link in this depiction corresponds to a region of the graphon.
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What are the clusters of a graphon?

Each link in this depiction corresponds to a region of the graphon.
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What are the clusters of a graphon?

▶ Wedefine clusters to be connected components.
▶ Generalize graph connectivity, extends (Janson, 2008). Details

▶ In fact, we can speak of the clusters at various levels.
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What are the clusters of a graphon?

▶ Intuition: Two graphonnodes are connected at level λ if there is a
path between themalongwhich each edge hasweight≥ λ.

▶ Three clusters (connected components) at level λ3.
▶ Any pair ( , ) are in same cluster at λ3. Same for ( , )& ( , ).
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What are the clusters of a graphon?

▶ Intuition: Two graphonnodes are connected at level λ if there is a
path between themalongwhich each edge hasweight≥ λ.

▶ Intuitively: red andblue clustersmerge at level λ2.
▶ Any pair ( , ) are in same cluster at λ2.
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What are the clusters of a graphon?

▶ Intuition: Two graphonnodes are connected at level λ if there is a
path between themalongwhich each edge hasweight≥ λ.

▶ All clustersmerge at level λ1.
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λ3

λ2

λ1

Wecall this structure the graphon cluster tree.

Recovering the graphon cluster tree is a natural
goal of clustering in the graphon setting.



We introduce a special functionMwhichwe call themergeon.
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M(x, y) encodes the height atwhich points x and y
merge in the graphon cluster tree.



Theorem (Eldridge, 2016):

If graphonsW1 andW2 are the sameup to relabeling, then
theirmergeons and cluster trees are the sameup to relabeling.

Surprisingly non-trivial to show.



The ideal clusters form the graphon cluster tree.
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Step 2: Define convergence to the graphon cluster tree.
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Context
Approaches to “correct” clustering.

Part I: Density
BeyondHartiganConsistency@COLT 2015
Awardedbest student paper.

Part II: Graphon
Graphons,mergeons, and so on!@NIPS 2016
Awarded full oral presentation.

Applications &Directions

• Background: stochastic blockmodel
• The graphonmodel
• The clusters of a graphon
•Merge distortion for graphons
• Converging clusteringmethods
• Examples



Themerge distortion

How“close” areC andC′?



Themerge distortion

Intuitively, corresponding pairs of nodes shouldmerge at around the
sameheight in each tree.



Themerge distortion

Merge heights are encoded in themergeon.



Themerge distortion

Merge heights are encoded in themergeon.



Themerge distortion

∣∣∣M( , ) − M′( , )
∣∣∣ is the difference inmerge height of , .



Themerge distortion

Themerge distortion d(C,C′):
themaximumdifference inmerge height over all pairs, i.e,

d(C,C′) = max
,

∣∣∣M( , ) − M′( , )
∣∣∣.



Themerge distortion

Wedefine consistency as convergence to the graphon cluster tree in the
merge distortion.



Wehave defined convergence inmerge distortion for graphons.
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Step 3: Does a clustering algorithmexistwhich converges?
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cluster tree

mergeon

cluster



Context
Approaches to “correct” clustering.

Part I: Density
BeyondHartiganConsistency@COLT 2015
Awardedbest student paper.

Part II: Graphon
Graphons,mergeons, and so on!@NIPS 2016
Awarded full oral presentation.

Applications &Directions

• Background: stochastic blockmodel
• The graphonmodel
• The clusters of a graphon
•Merge distortion for graphons
• Converging clusteringmethods
• Examples



Estimating edge probabilities. Details

p

p

q

Supposewe sample a graph from this graphon.



Estimating edge probabilities. Details

p

p

q

p p

q

Edgeswithin communities have probability p;
edges across communities have probability q.



Estimating edge probabilities. Details

p

p

q

p p

q

If we knew these edge probabilitieswe could recover the correct clusters.



Estimating edge probabilities. Details

p

p

q

But the edge probabilities are unknownand the presence/absence of an
edge (i, j) tells us little about its probability,Pij.



Estimating edge probabilities. Details

p

p

q

But the edge probabilities are unknownand the presence/absence of an
edge (i, j) tells us little about its probability,Pij.

Idea: Compute estimate P̂of edge probabilities froma single graph.



Let P̂be amatrix of estimated edge probabilities,
and letPbe the true edge probabilities.

Theorem (Eldridge, 2016):

Ifmaxij |P̂ij − Pij| → 0 =⇒
single-linkage on P̂ converges to the graphon cluster tree.



Let P̂be amatrix of estimated edge probabilities,
and letPbe the true edge probabilities.

Theorem (Eldridge, 2016):

Ifmaxij |P̂ij − Pij| → 0 =⇒
single-linkage on P̂ converges to the graphon cluster tree.

▶ There aremany recent graphon edge probability estimators.
▶ But all analyses are in aggregate error:

▶ i.e., they allowa small # of edge probability estimates to be bad.

▶ These results are tooweak for our purposes.
▶ Wemodify and analyze the neighborhood smoothingmethodof

(Zhang et al., 2015) to obtain consistency inmax-norm.



Neighborhood smoothing

i

j

Given this graph...



Neighborhood smoothing

i

j

Given this graph... estimatePij.



Neighborhood smoothing

i

j

Build a neighborhoodNi of nodeswith similar connectivity to that of i.



Neighborhood smoothing

i

j

▶ Average number edges fromnode in neighborhoodNi to j.
▶ Estimated edge probability: P̂ij = 2/6 = 1/3.



Theorem (Eldridge, 2016):

Ourmodified neighborhood smoothing edge probability estimator
forP is consistent inmax-norm.



Theorem (Eldridge, 2016):

Ourmodified neighborhood smoothing edge probability estimator
forP is consistent inmax-norm.

Corollary (Eldridge, 2016):

Consistent graphon clusteringmethod:

1. Estimate edge probabilitieswith ourmodified neighborhood smoother.
2. Apply single-linkage clustering to estimated edge probabilities.



Clustering in the stochastic blockmodel.

data

model

data clusters

ideal clusters

sample merge distortion

graphon
cluster tree

mergeon

neighborhood
smoothing + S-L
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Example
graphonW
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Example

Ourmethod: Neighborhood smoothing + single-linkage
1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2



Example

Ourmethod: Neighborhood smoothing + single-linkage
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Single linkage



Example

Network of college football games in 2001.

Each node is a team, an edge exists if teamsplayed.
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Context
Approaches to “correct” clustering.

Part I: Density
BeyondHartiganConsistency@COLT 2015
Awardedbest student paper.

Part II: Graphon
Graphons,mergeons, and so on!@NIPS 2016
Awarded full oral presentation.

Applications &Directions

Recap:
• The graphon is a richmodel
• Virtually unstudiedw.r.t. clustering
• Define clusters and convergence
• Prove nbhd. smoothing + S-L converges
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Practical application: Choosing a clustering algorithm

▶ Goal: recover regions of high density
Example: Group customers according to previous purchases.

▶ Consider algorithmswhich converge to density cluster tree.
▶ Robust single-linkage.

▶ Goal: recover cluster structure of a graph
Example: Find communities in social network.

▶ Consider algorithmswhich converge to graphon cluster tree.
▶ Neighborhood smoothing + single-linkage.

▶ Quite likely that density/graphon is a good fit to data.
▶ Weguarantee strong convergence, no oversegmentation.
▶ Naturally discuss statistical significance of clusters.
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Practical application: Choosing a clustering algorithm

▶ Goal: recover regions of high density
Example: Group customers according to previous purchases.

▶ Consider algorithmswhich converge to density cluster tree.
▶ Robust single-linkage.

▶ Goal: recover cluster structure of a graph
Example: Find communities in social network.

▶ Consider algorithmswhich converge to graphon cluster tree.
▶ Neighborhood smoothing + single-linkage.

▶ Quite likely that density/graphon is a good fit to data.
▶ Weguarantee strong convergence, no oversegmentation.
▶ Naturally discuss statistical significance of clusters.



Practical application: Comparing clusterings quantitatively

▶ We’d often like to compare clusterings:
▶ Whendowe stop our iterative algorithm?
▶ How far arewe fromapartial clustering provided by a teacher?

▶ Weprovide the (efficiently computable)merge distortion:



Practical application: Visualizing high-dimensional densities

▶ Oftenhave high-dimensional datawhichwe can’t simply plot.
▶ Important aspects of data’s structure can be lostwhenprojected.
▶ Approach: Cluster by estimating the density cluster tree & visualize.
▶ Wehave developedDenali2 tree visualization software:

2http://denali.cse.ohio-state.edu

http://denali.cse.ohio-state.edu


Direction: Formalizing correctness.

Howdowe combine approaches to formalizing clustering?

Optimization

Axiomatic

Statistical
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Direction: Formalizing correctness.

Howdowe combine approaches to formalizing clustering?

Optimization

Axiomatic

Statistical

Practical importance:

▶ Manypopular clusteringmethods are not framed statistically.
▶ What do their clusters converge to?
▶ Howdowe interpret them?



Direction: Interactive clustering

Howdowe formalize correctness?



“correct” clustering


















