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> In general, there is no single answer.
» But consider a statistical approach...
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In the statistical approach, there is often

a natural ground truth clustering.




Example: the density model.

0. Model the data as coming from a probability density.




Example: the density model.

1. Define the clusters of the density.
» Region of high probability.
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Example: the density model.

1. Define the clusters of the density.
» Elements of the density cluster tree of f.




Natural goal of clustering in the density model:
Recover the density cluster tree.



Example: the density model.

2. Develop a notion of convergence to the density cluster tree.

Sample n points from density. ‘




Example: the density model.
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‘ Apply hierarchical clustering algorithm. ‘
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Example: the density model.

2. Develop a notion of convergence to the density cluster tree.
» Weak notion: Hartigan consistency (1981).
> Clusters disjoint in true tree should be disjoint in clustering.
» Strong notion: Merge distortion (EBW, 2015).
> Pairs of points merge around same height in both trees.

3. Construct consistent density clustering algorithms.
» Hartigan consistent:

> Robust single linkage (Chaudhuri & Dasgupta, 2010)
> Tree pruning (Kpotufe & von Luxburg, 2011)

» Consistent in merge distortion:
> (EBW, 2015)



In this talk, we develop a statistical theory of graph clustering:

w N = o

We model the data as coming from a graphon.
We define the clusters of a graphon.
We develop a notion of convergence to the graphon’s clusters.

We provide a clustering algorithm which converges to the graphon’s
clusters.
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Background: the stochastic blockmodel.

» Much of existing theory is in the stochastic blockmodel.

v

This is a model for generating random graphs.

v

Each node belongs to one of k blocks, or communities.

Edge probabilities parameterized by symmetric k X k matrix P:
» Prob. of edge within community i given by P;;.
> Prob. of edge between communities i and j given by P;;.

v

\4

Example: 2-block model.
» Social network of girls and boys at a school.
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Sampling from a blockmodel.

We can generate a random graph with n nodes from P as follows...

1. Sample communities uniformly with replacement.
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Sampling from a blockmodel.

We can generate a random graph with n nodes from P as follows...
1. Sample communities uniformly with replacement.
2. Sample edges with probability according to P.
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Sampling from a blockmodel.

We can generate a random graph with n nodes from P as follows
1. Sample communities uniformly with replacement.
2. Sample edges with probability according to P.
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Sampling from a blockmodel.

We can generate a random graph with n nodes from P as follows...
1. Sample communities uniformly with replacement.
2. Sample edges with probability according to P.
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Repeat for all
pairs of nodes.



Sampling from a blockmodel.

We can generate a random graph with n nodes from P as follows...
1. Sample communities uniformly with replacement.
2. Sample edges with probability according to P.

3. Forget community labels.
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Equivalent parameterizations.

Permuting the rows/columns of P does not change graph distribution.
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Clustering theory in the stochastic blockmodel.

1. Define the clusters of the blockmodel.
» The communities used to define the blockmodel.

2. Develop a notion of convergence to the communities.
» Recover community labels exactly asn — oo.

from

3. Construct consistent blockmodel clustering algorithms.
» Spectral methods, such as (McSherry, 2001).



Problem: Many real-world networks not well-fit by blockmodel.

» Large networks (Facebook, LinkedIn, etc.) are complicated.
» The 2-blockmodel is very simple.
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Problem: Many real-world networks not well-fit by blockmodel.

» Large networks (Facebook, LinkedIn, etc.) are complicated.
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The limit of a blockmodel is...

k—)oo




The limit of a blockmodel is...

lim [==

k— o0

...a graphon!
symmietric,
measurable

W:[0,1]? — [0,1]




The limit of a blockmodel is...

lim' [==

k— o0

...a graphon!
symmetric,
- measurable
W:[0,1]? — [0,1]

 Convergence in so-called cut metric, (Lovasz, 2012).



Interpretation: The adjacency of an infinite weighted graph.




Interpretation: The adjacency of an infinite weighted graph.

Graphon “nodes” are points x, y € [0, 1].
X y




Interpretation: The adjacency of an infinite weighted graph.

W(x, y) is the weight of the “edge” (x, y).




Sampling a graph from W.

Graphon sampling is analogous to sampling from a blockmodel.
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First, sample n graphon nodes, i.e., points from Unif|0, 1].

X2 X5 X1 X4 X3

|
\S




Sampling a graph from W.

First, sample n graphon nodes, i.e., points from Unif|0, 1].

X2 X5 X1 X4 X3 Xg
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Sampling a graph from W.
Include edge (x1, x5) with probability W(x, xs).
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Sampling a graph from W.

By chance, edge (x1, xs) is included.

X2 X5 X1 X4 X3 Xg
] |




Sampling a graph from W.
Include edge (x3, x¢) with probability W(xs, xg).

X2 X5 X1 X4 X3 Xg
]




Sampling a graph from W.

By chance, edge (X3, Xg) is omitted.

X2 X5 X1 X4 X3 Xg
] |




Sampling a graph from W.

Repeat for all possible edges.

X2 X5 X1 X4 X3 Xg
] |




Sampling a graph from W.
Forget node labels, obtaining undirected & unweighted graph.

X2 X5 X1 X4 X3 Xg
] |
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Sampled graphs converge to the graphon they were sampled from.
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Sampled graphs converge to the graphon they were sampled from.
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Sampled graphs converge to the graphon they were sampled from.




A graphon W defines a very rich distribution on graphs.

» Better models real-world data (Hoff, 2002).
» Subsumes many models, e.g., blockmodel:



A graphon W defines a very rich distribution on graphs.

» Better models real-world data (Hoff, 2002).
» Subsumes many models, e.g., blockmodel:

Warning! Graphons can be much more complex than blockmodels.

» Present several unique and subtle technical
issues.



Issue 1: A graphon node or edge is not meaningful by itself.
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In a careful approach:
» Do not reference single nodes/edges in a graphon.

» Only deal with equivalence classes of sets of nodes modulo
null sets.

In what follows, we largely ignore the issue in the interest of time
and simplicity; see paper for details.




Recall: P, and P, define the same stochastic blockmodel if they
are equivalent up to relabeling.
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Issue 2: Similarly, W; and W, define the same graphon model
< they are equivalent up to relabeling, (Lovasz, 2012).



Issue 2: A graphon relabeling can be very complex.

» Arelabelingisamap g : [0,1] — [0, 1].
» @ must be “measure preserving”.

> Only in one direction: preimage.

» Can map a null set to a set of full measure!

» Does not need to be a bijection. Far from it!




There is usually no canonical way to label a graphon.

» For presentation, we will use a “nice” labeling of “nice”
graphons; i.e., piecewise constant.

» But our definitions will make sense for any labeling of any
graphon; i.e., arbitrarily-complex measurable function.




A statistical theory of graphon clustering.
In this talk...
0. We model the data as coming from a graphon.
We give answers to the following:

1. What are the clusters of a graphon?
2. How do we define convergence to the graphon’s clusters?
» le,, statistical consistency.

3. Which clustering algorithms are consistent?



What are the clusters of a graphon?

We interpret the graphon as the adjacency of an infinite weighted graph.
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What are the clusters of a graphon?

Each link in this depiction corresponds to a region of the graphon.
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What are the clusters of a graphon?

» We define clusters to be connected components.
» Use generalization of graph connectivity, extends (Janson, 2008).
> Key: Insensitive to null sets, e.g., single edges.
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What are the clusters of a graphon?

> In fact, we can speak of the clusters at various levels.
> Intuitively: three clusters (connected components) at level A3.
> Any pair (0, ©) are in same cluster at 3. Same for (0, 0) & (©, 0).
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What are the clusters of a graphon?

» In fact, we can speak of the clusters at various levels.

> Intuitively: three clusters (connected components) at level A3.
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What are the clusters of a graphon?

» In fact, we can speak of the clusters at various levels.
> Intuitively: red and blue clusters merge at level A;.

> Any pair (0, ©) are in same cluster at 4.

> Naturally encoded as M(0, ©) = M(0,0) = A,.
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What are the clusters of a graphon?

» In fact, we can speak of the clusters at various levels.
> All clusters merge at level 1;.
» Encoded as M(0,0) = M(0©,0) = 1;.

oo




We call M the mergeon.




We call M the mergeon.

» M(x,y) encodes the first level at which x & y are in same cluster.
» As such, M defines the ground truth clustering of a graphon.
> Note: Mergeon helps deal with subtle technical hurdles.



A mergeon has hierarchical structure.
Clusters from higher levels nest within clusters from lower levels.

A2

A1

We call this structure the graphon cluster tree.



If graphons Wy and W, are the same up to relabeling, then
their mergeons and cluster trees are the same up to relabeling.

Cg/

Surprisingly non-trivial to show.



A statistical theory of graphon clustering.

1. What is the ground truth clustering of a graphon?
» The mergeon, or, equivalently, the graphon cluster tree.
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The merge distortion
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How “close” are Cand C’?



The merge distortion

It

C C’

Intuitively, corresponding pairs of nodes should merge at around the
same height in each tree.



The merge distortion
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Merge heights are encoded in the mergeon.



The merge distortion
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|M( 0,0) M@, .)| is the difference in merge heightof @, @.



The merge distortion

i
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We introduce the merge distortion d(C, C’):
the maximum difference in merge height over all pairs, i.e,

d(c,c’) = oo MO, ®)-M(®,®)



Convergence in merge distortion

We say C,, converges in merge distortion to Cifd(C, C,) — Oasn — co.

1

C Cn

Definition
An algorithm is consistent if its output converges in merge distortion to
the graphon cluster tree in probability asn — oo.

» Consistency = disjoint clusters are separated asn — co.



A technical detail...

We imagine that the nodes of the graph correspond to graphon nodes.
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A technical detail...

We imagine that the nodes of the graph correspond to graphon nodes.
But this correspondence is latent and unrecoverable.

O

» Need correspondence to compute merge distortion.
» Solution: Compute distortion for all possible correspondences.

» Set of correspondences which result in large merge distortion
shrinksasn — oo.



A statistical theory of graphon clustering.

1. What is the ground truth clustering of a graphon?
» The mergeon, or, equivalently, the graphon cluster tree.

2. How do we define convergence/consistency?
» Convergence in merge distortion using the mergeon.

3. Which clustering algorithms are consistent?



Estimating edge probabilities.

Suppose we sample a graph from this graphon.



Estimating edge probabilities.

Edges within communities have probability p;
edges across communities have probability g.
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Estimating edge probabilities.
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If we knew these edge probabilities we could recover the correct clusters.



Estimating edge probabilities.

But the edge probabilities are unknown and the presence/absence of an
edge (i, /) tells us little about its probability, Pj.



Estimating edge probabilities.

But the edge probabilities are unknown and the presence/absence of an
edge (i, /) tells us little about its probability, Pj.

Idea: Compute estimate P of edge probabilities from a single graph.



Theorem
If||P = Pllmax — 0in probability as n — oo, then single linkage clustering
using P as the input similarity matrix is a consistent clustering method.



Theorem
If||P = Pllmax — 0in probability as n — oo, then single linkage clustering
using P as the input similarity matrix is a consistent clustering method.

» There are many recent graphon & edge probability estimators.
» But all consistency results are in mean squared error.
» This is too weak. Need consistency in max-norm.

» We modify and analyze the neighborhood smoothing method of
(Zhang et al., 2015) to obtain consistency in max-norm.



Neighborhood smoothing

U
e
VSIAYY

X7
.‘l

\ N A
[

o

Given this graph...



Neighborhood smoothing
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Given this graph... estimate Pj;.



Neighborhood smoothing

Build a neighborhood N; of nodes with similar connectivity to that of i.



Neighborhood smoothing

O
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» Average number edges from node in neighborhood N; to j.
> Estimated edge probability: ,‘5,7 =2/6 = 1/3.

O



Consistency of neighborhood smoothing.

Theorem
Our modified neighborhood smoothing edge probability estimator for P is
consistent in max norm.

Corollary
Consistent graphon clustering method!:

1. Estimate edge probabilities with our modified neighborhood
smoothing approach.

2. Apply single linkage clustering to estimated edge probabilities.



In summary, we develop a statistical theory of graph
clustering in the graphon model:

1. We define the clusters of a graphon.
» The graphon cluster tree/mergeon.

2. We develop a notion of consistency.
» Convergence in merge distortion.

3. We provide a consistent algorithm.
» Modified neighborhood smoothing + single linkage.
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Weak isomorphism

» Any graphon W defines a graph distribution.
» Not uniquely! Many graphons define the same distribution.
» The distribution is uniquely determined up to relabeling of W.
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Weak isomorphism

» Any graphon W defines a graph distribution.
» Not uniquely! Many graphons define the same distribution.
» The distribution is uniquely determined up to relabeling of W.

Definition

A measure preserving transformation (i.e., graphon relabeling)

¢ : [0,1] — [0, 1] is a Lebesgue-measurable function whose preimage
preserves measure. That s, u(¢2(A)) = u(A) for all measurable
Aco,1].

Notation: W¥(x, y) = W(e(x), ¢(y))- 0. 70
X+12 x<1), 7l
¢(x) = 3
X—=12 x>1/2 N
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Weak isomorphism

» Any graphon W defines a graph distribution.
» Not uniquely! Many graphons define the same distribution.
» The distribution is uniquely determined up to relabeling of W.

Definition
A measure preserving transformation (i.e., graphon relabeling)
¢ : [0,1] — [0, 1] is a Lebesgue-measurable function whose preimage

preserves measure. That s, u(¢2(A)) = u(A) for all measurable
Aco,1].
Notation: W¥(x, y) = W(e(x), ¢(y)).

¢(x) =2x mod 1




Weak isomorphism

Definition (Lovasz)
Two graphons W, and W, are weakly isomorphic if there exist measure
preserving transformations ¢; and ¢ such that W4 % W£2.

» Wy and W, define the same distribution iff they are weakly
isomorphic.



Weak isomorphism

Definition (Lovasz)
Two graphons W, and W, are weakly isomorphic if there exist measure
preserving transformations ¢; and ¢ such that W4 % W£2.

» Wy and W, define the same distribution iff they are weakly
isomorphic.

w W?, o =2x mod 1

Weakly
isomorphic

Define same
distribution




The clusters of a graphon

1. Collect all subsets of [0, 1] which should be clustered at A:
Ay ={Ac0,1] : u(A) > 0and Ais connected V 1" < 1.}

2. IfA;,A),Ae Uy, andA; UA; C A, then Ay, Ay, and A should all be in
the same cluster at A. Consider them equivalent.

» Define equivalence relation on 2 ;:
Al 00, A2 — dAe QIA,A DAl UAz.

» Read: A; is clustered with A, at level A.
» o—o, partitions A, into equivalence classes of sets which should be in
the same cluster.



The clusters of a graphon

3. Define clusters to be “largest” element of each equivalence class.

> Subtlety in defining “largest”:
> Suppose &7 € A, /o—o, is such an equivalence class.
> LetA be any representative from <7, let Z be a set of zero measure.
» A = AU Zis arepresentative of .o/
> In general there is no representative of .o’ which strictly contains all
other representatives in .o/
» We can find reps. which contain every other rep. up to a null set,
called the “essential maxima” of <7

essmaxo/ ={Ae€ o VA € o/, u(A"\ A) = 0}

> The clusters of W at level A are the essential maxima of each
equivalence class:

Cw(d) = {essmax o/ : & € A /o—o,.}



Consistent algorithms

> Intuitively, estimating the graphon is related to clustering.
> It suffices to estimate the so-called edge probability matrix.

W P: P,'j = W(X,',Xj)
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Consistent algorithms

> Intuitively, estimating the graphon is related to clustering.
> It suffices to estimate the so-called edge probability matrix.

W P (artificially permuted)



Sample an adjacency matrix A from P:

w P A
(artificially permuted)



Sample an adjacency matrix A from P:

w P A
(artificially permuted)

Ais a poor estimate of P.









n=32







n =128




n =256




Edge probability estimation

Goal: Compute estimated edge probabilities P from A.

P A p
Theorem
IF||P = Pllmax — 0in probability as n — oo, then single linkage clustering
on P s a consistent clustering method.



Edge probability estimation

Goal: Compute estimated edge probabilities P from A.

P A p
Theorem
IF||P = Pllmax — 0in probability as n — oo, then single linkage clustering
on P s a consistent clustering method.

» We need a suitable estimator P of edge probabilities.
» Recently, Zhang et al. (2015) proposed neighborhood smoothing.



Neighborhood smoothing

Given A, the adjacency matrix of a sampled graph...



Neighborhood smoothing

]

Consider a node j and its corresponding column of A.



Neighborhood smoothing

i J

Measure similarity to every other node:
d(i.f) = maxue; |(A%)i — (A%)j|



Neighborhood smoothing
N;

Form neighborhood N; of nodes most similar to /.



Neighborhood smoothing
N;

Z_

Average within neighborhood to estimate edge probability:
Pij = s S, Avj + %N/l 2jen; Aip



Neighborhood smoothing

The result is a smoothed estimate P of edge probabilities.



