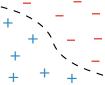
Graphons, mergeons, and so on!

Justin Eldridge

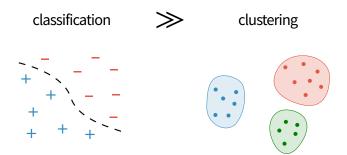
with

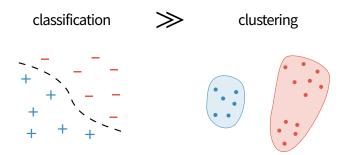
Mikhail Belkin, Yusu Wang

classification clustering



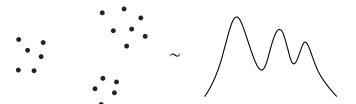






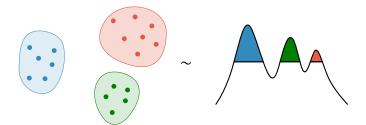
► In general, there is no single answer.

- ► In general, there is no single answer.
- ► But consider a statistical approach...



- ► In general, there is no single answer.
- But consider a statistical approach...

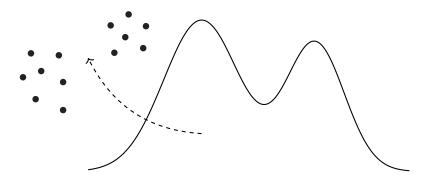
- ► In general, there is no single answer.
- But consider a statistical approach...



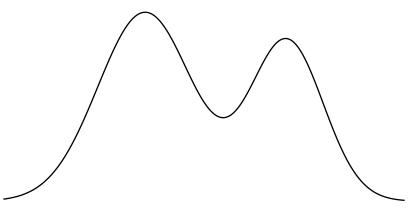
- ► In general, there is no single answer.
- ► But consider a statistical approach...

In the statistical approach, there is often a natural ground truth clustering.

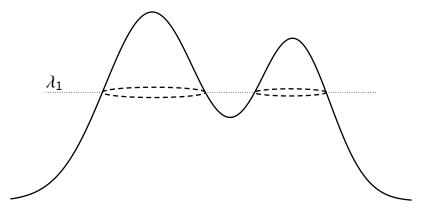
0. Model the data as coming from a probability density.



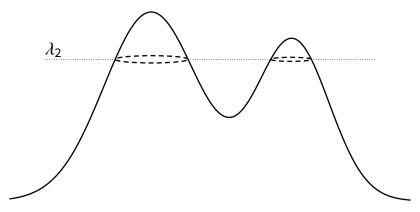
- 1. Define the clusters of the density.
 - Region of high probability.



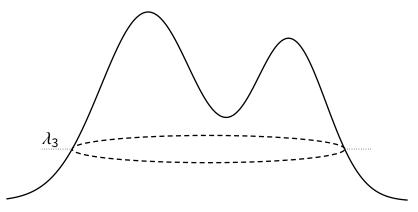
- 1. Define the clusters of the density.
 - ► Connected component of $\{f \ge \lambda_1\}$?



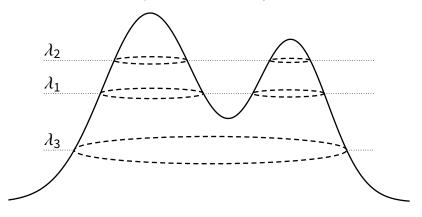
- 1. Define the clusters of the density.
 - ► Connected component of $\{f \ge \lambda_2\}$?



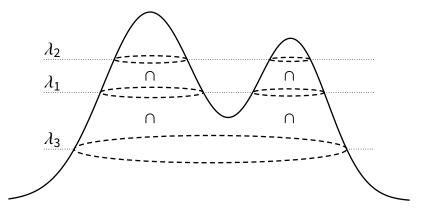
- 1. Define the clusters of the density.
 - ► Connected component of $\{f \ge \lambda_3\}$?



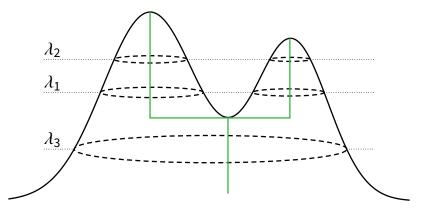
- 1. Define the clusters of the density.
 - ► Connected component of $\{f \ge \lambda\}$ for any $\lambda > 0$.



- 1. Define the clusters of the density.
 - ► Connected component of $\{f \ge \lambda\}$ for any $\lambda > 0$.

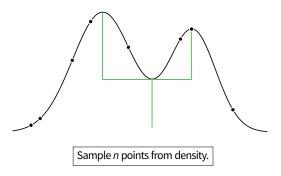


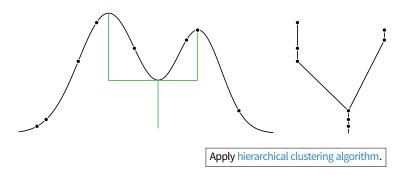
- 1. Define the clusters of the density.
 - ► Elements of the density cluster tree of *f*.

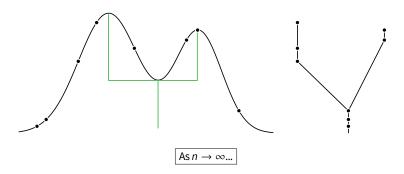


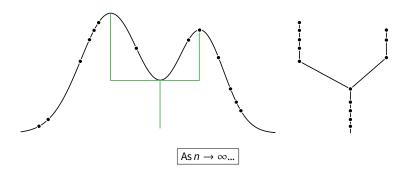
- Define the clusters of the density.
 - ► Elements of the density cluster tree of *f*.

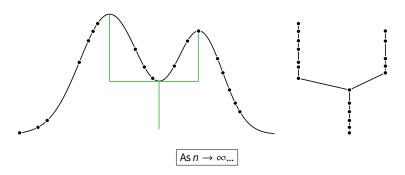
Natural goal of clustering in the density model: Recover the density cluster tree.

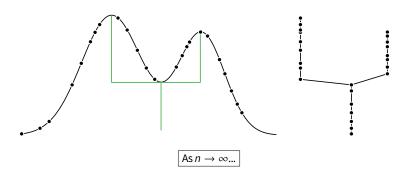












- 2. Develop a notion of convergence to the density cluster tree.
 - Weak notion: Hartigan consistency (1981).
 - Clusters disjoint in true tree should be disjoint in clustering.

- 2. Develop a notion of convergence to the density cluster tree.
 - Weak notion: Hartigan consistency (1981).
 - Clusters disjoint in true tree should be disjoint in clustering.

3. Construct consistent density clustering algorithms.

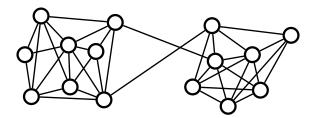
- 2. Develop a notion of convergence to the density cluster tree.
 - Weak notion: Hartigan consistency (1981).
 - Clusters disjoint in true tree should be disjoint in clustering.

- 3. Construct consistent density clustering algorithms.
 - Hartigan consistent:
 - Robust single linkage (Chaudhuri & Dasgupta, 2010)
 - Tree pruning (Kpotufe & von Luxburg, 2011)

- 2. Develop a notion of convergence to the density cluster tree.
 - Weak notion: Hartigan consistency (1981).
 - Clusters disjoint in true tree should be disjoint in clustering.
 - Strong notion: Merge distortion (EBW, 2015).
 - Pairs of points merge around same height in both trees.
- 3. Construct consistent density clustering algorithms.
 - Hartigan consistent:
 - Robust single linkage (Chaudhuri & Dasgupta, 2010)
 - Tree pruning (Kpotufe & von Luxburg, 2011)

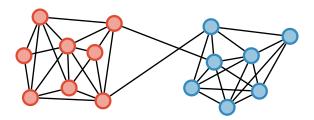
- 2. Develop a notion of convergence to the density cluster tree.
 - Weak notion: Hartigan consistency (1981).
 - Clusters disjoint in true tree should be disjoint in clustering.
 - Strong notion: Merge distortion (EBW, 2015).
 - Pairs of points merge around same height in both trees.
- 3. Construct consistent density clustering algorithms.
 - Hartigan consistent:
 - Robust single linkage (Chaudhuri & Dasgupta, 2010)
 - Tree pruning (Kpotufe & von Luxburg, 2011)
 - Consistent in merge distortion:
 - ► (EBW, 2015)

In this talk, we develop a statistical theory of graph clustering:



- 0. We model the data as coming from a graphon.
- 1. We define the clusters of a graphon.
- 2. We develop a notion of convergence to the graphon's clusters.
- We provide a clustering algorithm which converges to the graphon's clusters.

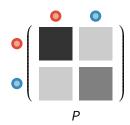
In this talk, we develop a statistical theory of graph clustering:



- 0. We model the data as coming from a graphon.
- 1. We define the clusters of a graphon.
- 2. We develop a notion of convergence to the graphon's clusters.
- We provide a clustering algorithm which converges to the graphon's clusters.

Background: the stochastic blockmodel.

- Much of existing theory is in the stochastic blockmodel.
- This is a model for generating random graphs.
- ► Each node belongs to one of *k* blocks, or communities.
- ▶ Edge probabilities parameterized by symmetric $k \times k$ matrix P:
 - ▶ Prob. of edge within community i given by P_{ii} .
 - ▶ Prob. of edge between communities i and j given by P_{ij} .
- Example: 2-block model.
 - Social network of girls and boys at a school.



Sampling from a blockmodel.

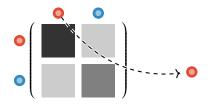
We can generate a random graph with *n* nodes from *P* as follows...

1. Sample communities uniformly with replacement.

Sampling from a blockmodel.

We can generate a random graph with *n* nodes from *P* as follows...

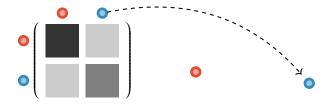
1. Sample communities uniformly with replacement.



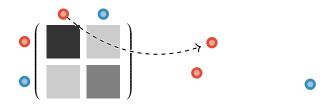
Sampling from a blockmodel.

We can generate a random graph with *n* nodes from *P* as follows...

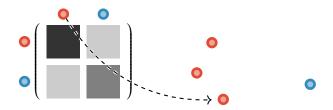
1. Sample communities uniformly with replacement.



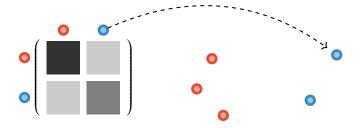
We can generate a random graph with *n* nodes from *P* as follows...



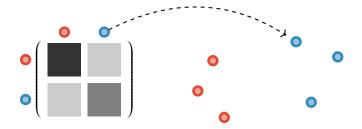
We can generate a random graph with *n* nodes from *P* as follows...



We can generate a random graph with *n* nodes from *P* as follows...

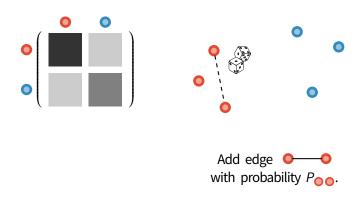


We can generate a random graph with *n* nodes from *P* as follows...

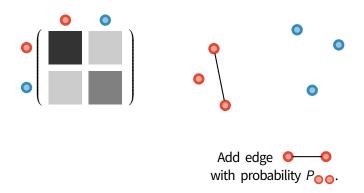


- 1. Sample communities uniformly with replacement.
- 2. Sample edges with probability according to P.

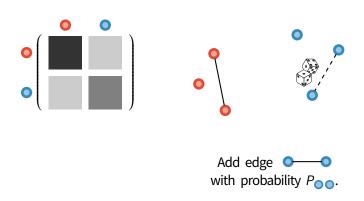
- 1. Sample communities uniformly with replacement.
- 2. Sample edges with probability according to P.



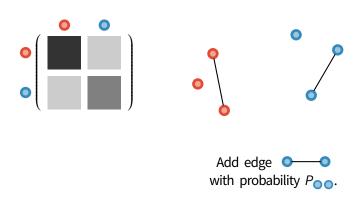
- 1. Sample communities uniformly with replacement.
- 2. Sample edges with probability according to P.



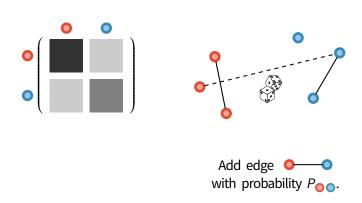
- 1. Sample communities uniformly with replacement.
- 2. Sample edges with probability according to P.



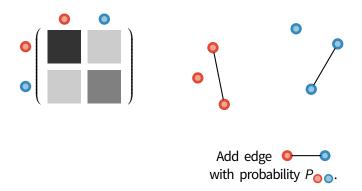
- 1. Sample communities uniformly with replacement.
- 2. Sample edges with probability according to P.



- 1. Sample communities uniformly with replacement.
- 2. Sample edges with probability according to P.

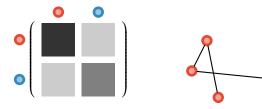


- 1. Sample communities uniformly with replacement.
- 2. Sample edges with probability according to P.



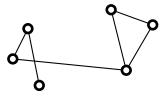
We can generate a random graph with *n* nodes from *P* as follows...

- 1. Sample communities uniformly with replacement.
- 2. Sample edges with probability according to P.



Repeat for all pairs of nodes.

- 1. Sample communities uniformly with replacement.
- 2. Sample edges with probability according to P.
- 3. Forget community labels.



Equivalent parameterizations.

Permuting the rows/columns of *P* does not change graph distribution.

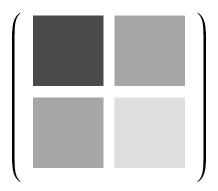
Clustering theory in the stochastic blockmodel.

- 1. Define the clusters of the blockmodel.
 - The communities used to define the blockmodel.
- 2. Develop a notion of convergence to the communities.
 - ▶ Recover community labels exactly as $n \to \infty$.



- 3. Construct consistent blockmodel clustering algorithms.
 - Spectral methods, such as (McSherry, 2001).

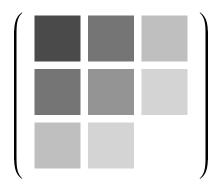
- Large networks (Facebook, LinkedIn, etc.) are complicated.
- ► The 2-blockmodel is very simple.



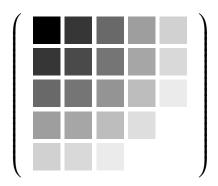
- Large networks (Facebook, LinkedIn, etc.) are complicated.
- ► The 2-blockmodel is very simple.
- ► Solution: Increase number of parameters, i.e., communities...



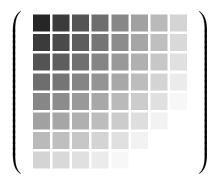
- Large networks (Facebook, LinkedIn, etc.) are complicated.
- ► The 2-blockmodel is very simple.
- Solution: Increase number of parameters, i.e., communities...



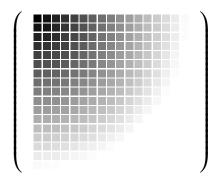
- Large networks (Facebook, LinkedIn, etc.) are complicated.
- ► The 2-blockmodel is very simple.
- ► Solution: Increase number of parameters, i.e., communities...



- Large networks (Facebook, LinkedIn, etc.) are complicated.
- ► The 2-blockmodel is very simple.
- Solution: Increase number of parameters, i.e., communities...



- Large networks (Facebook, LinkedIn, etc.) are complicated.
- The 2-blockmodel is very simple.
- Solution: Increase number of parameters, i.e., communities...



The limit of a blockmodel is...

$$\lim_{k\to\infty} \left[\begin{array}{c} \bullet \\ \bullet \end{array} \right], \dots$$

?

The limit of a blockmodel is...

$$\lim_{k\to\infty} (\bullet, \bullet, \bullet), (\bullet, \bullet), (\bullet, \bullet), \dots$$

$$= \dots a graphon!$$

$$\text{symmetric,}$$

$$\text{measurable}$$

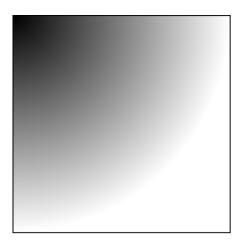
$$W: [0, 1]^2 \to [0, 1]$$

The limit of a blockmodel is...

$$\lim_{k\to\infty}^{\dagger} (\begin{tabular}{ll} \begin{tabular}{ll} \begin{tabu$$

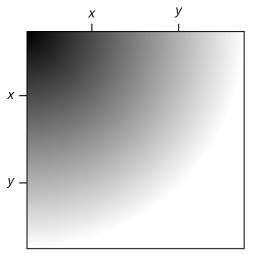
† Convergence in so-called cut metric, (Lovász, 2012).

Interpretation: The adjacency of an infinite weighted graph.



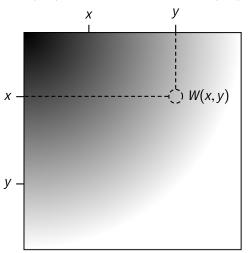
Interpretation: The adjacency of an infinite weighted graph.

Graphon "nodes" are points $x, y \in [0, 1]$.

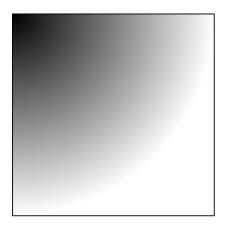


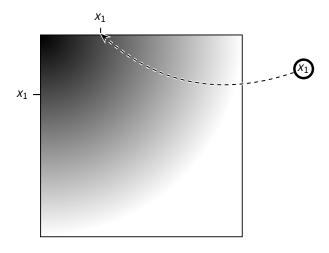
Interpretation: The adjacency of an infinite weighted graph.

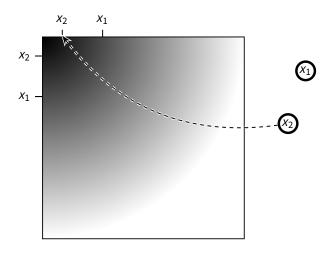
W(x, y) is the weight of the "edge" (x, y).

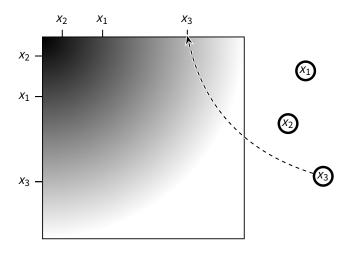


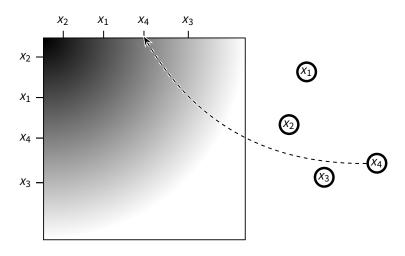
Graphon sampling is analogous to sampling from a blockmodel.

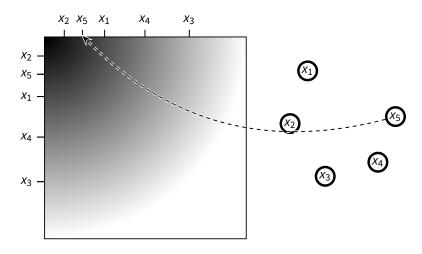






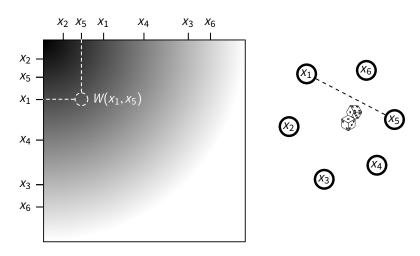




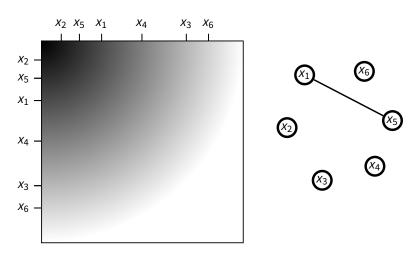




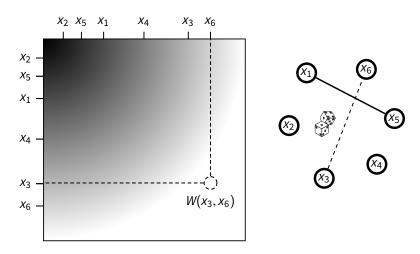
Include edge (x_1, x_5) with probability $W(x_1, x_5)$.



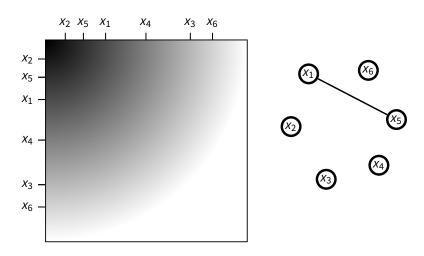
By chance, edge (x_1, x_5) is included.



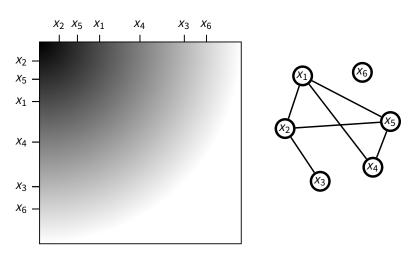
Include edge (x_3, x_6) with probability $W(x_3, x_6)$.



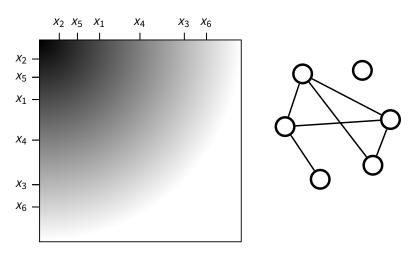
By chance, edge (x_3, x_6) is omitted.

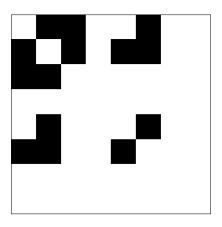


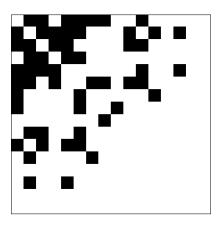
Repeat for all possible edges.

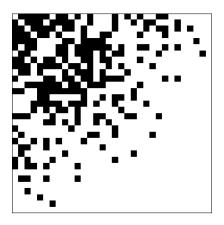


Forget node labels, obtaining undirected & unweighted graph.

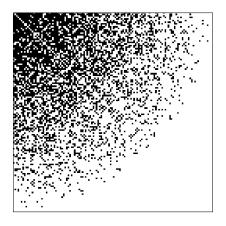


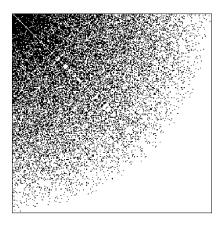


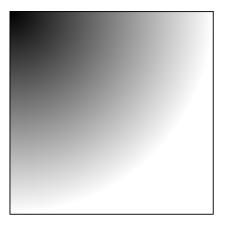






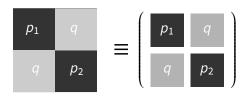






A graphon W defines a very rich distribution on graphs.

- ▶ Better models real-world data (Hoff, 2002).
- Subsumes many models, e.g., blockmodel:



A graphon W defines a very rich distribution on graphs.

- ▶ Better models real-world data (Hoff, 2002).
- Subsumes many models, e.g., blockmodel:

Warning! Graphons can be much more complex than blockmodels.

 Present several unique and subtle technical issues.

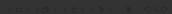
Issue 1: A graphon node or edge is not meaningful by itself.

Issue 1: A graphon node or edge is not meaningful by itself.

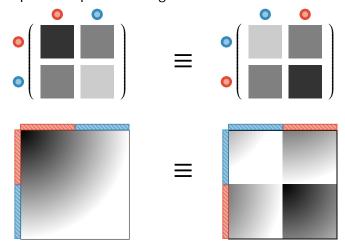
In a careful approach:

- ▶ Do not reference single nodes/edges in a graphon.
- Only deal with equivalence classes of sets of nodes modulo null sets.

In what follows, we largely ignore the issue in the interest of time and simplicity; see paper for details.



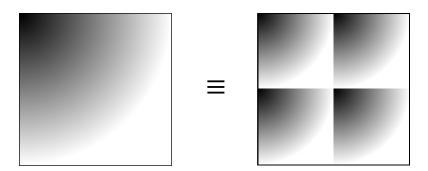
Recall: P_1 and P_2 define the same stochastic blockmodel if they are equivalent up to relabeling.



Issue 2: Similarly, W_1 and W_2 define the same graphon model \iff they are equivalent up to relabeling, (Lovász, 2012).

Issue 2: A graphon relabeling can be very complex.

- ▶ A relabeling is a map φ : $[0,1] \rightarrow [0,1]$.
- φ must be "measure preserving".
 - Only in one direction: preimage.
 - Can map a null set to a set of full measure!
- Does not need to be a bijection. Far from it!



Issue 2: A graphon relabeling can be very complex.

- ▶ A relabeling is a map φ : $[0,1] \rightarrow [0,1]$.
- φ must be "measure preserving".
 - Only in one direction: preimage.

There is usually no canonical way to label a graphon.

- ► For presentation, we will use a "nice" labeling of "nice" graphons; i.e., piecewise constant.
- ▶ But our definitions will make sense for any labeling of any graphon; i.e., arbitrarily-complex measurable function.

A statistical theory of graphon clustering.

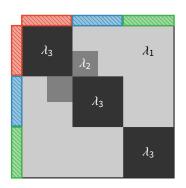
In this talk...

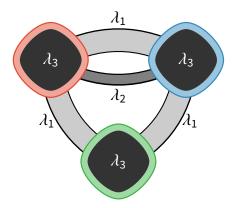
0. We model the data as coming from a graphon.

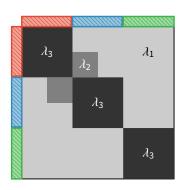
We give answers to the following:

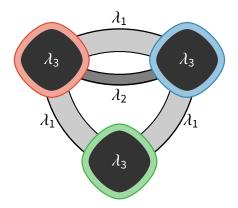
- 1. What are the clusters of a graphon?
- 2. How do we define convergence to the graphon's clusters?
 - I.e., statistical consistency.
- 3. Which clustering algorithms are consistent?

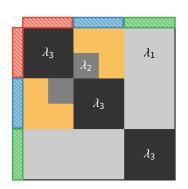
We interpret the graphon as the adjacency of an infinite weighted graph.

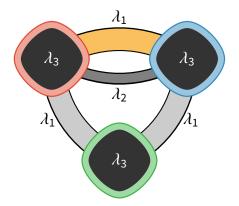


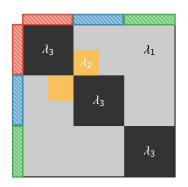


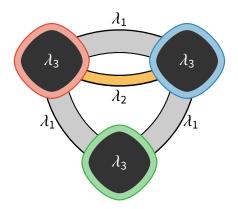


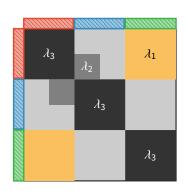


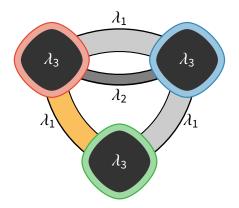


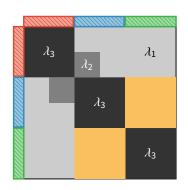


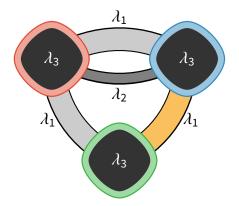




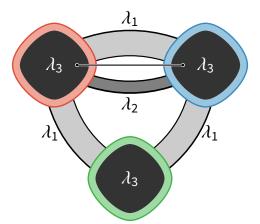




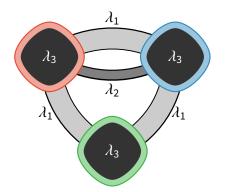




- We define clusters to be connected components.
- ▶ Use generalization of graph connectivity, extends (Janson, 2008).
- Key: Insensitive to null sets, e.g., single edges.

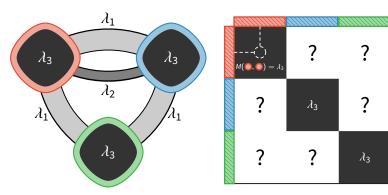


- ▶ In fact, we can speak of the clusters at various levels.
- ▶ Intuitively: three clusters (connected components) at level λ_3 .
- ▶ Any pair (\bigcirc, \bigcirc) are in same cluster at λ_3 . Same for (\bigcirc, \bigcirc) & (\bigcirc, \bigcirc) .

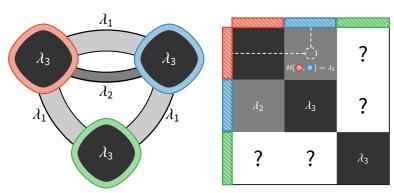


? ? ? ? ? ? ? ?

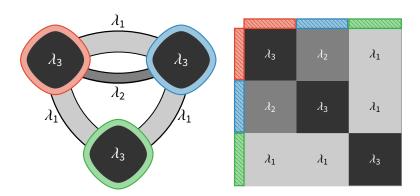
- ▶ In fact, we can speak of the clusters at various levels.
- ▶ Intuitively: three clusters (connected components) at level λ_3 .
- ▶ Any pair (\bigcirc , \bigcirc) are in same cluster at λ_3 . Same for (\bigcirc , \bigcirc) & (\bigcirc , \bigcirc).
- ▶ Naturally encoded as function $M(\bullet, \bullet) = M(\bullet, \bullet) = M(\bullet, \bullet) = \lambda_3$



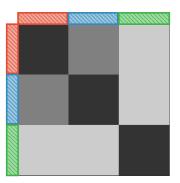
- In fact, we can speak of the clusters at various levels.
- ▶ Intuitively: red and blue clusters merge at level λ_2 .
- Any pair (\bullet, \bullet) are in same cluster at λ_2 .
- ▶ Naturally encoded as $M(\bullet, \bullet) = M(\bullet, \bullet) = \lambda_2$.



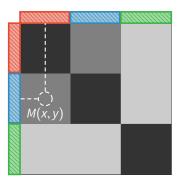
- ▶ In fact, we can speak of the clusters at various levels.
- ▶ All clusters merge at level λ_1 .
- ► Encoded as $M(\bullet, \bullet) = M(\bullet, \bullet) = \lambda_1$.



We call *M* the mergeon.



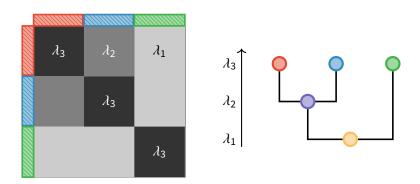
We call *M* the mergeon.



- \blacktriangleright M(x, y) encodes the first level at which x & y are in same cluster.
- ► As such, *M* defines the ground truth clustering of a graphon.
- Note: Mergeon helps deal with subtle technical hurdles.

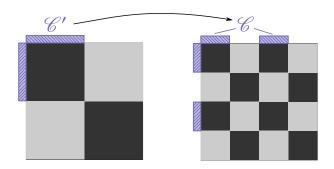
A mergeon has hierarchical structure.

Clusters from higher levels nest within clusters from lower levels.



We call this structure the graphon cluster tree.

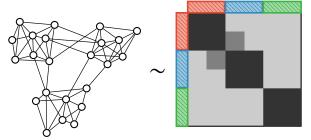
If graphons W_1 and W_2 are the same up to relabeling, then their mergeons and cluster trees are the same up to relabeling.



Surprisingly non-trivial to show.

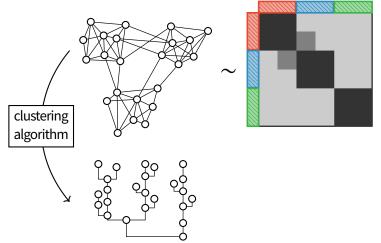
A statistical theory of graphon clustering.

- 1. What is the ground truth clustering of a graphon?
 - ► The mergeon, or, equivalently, the graphon cluster tree.
- 2. How do we define convergence?



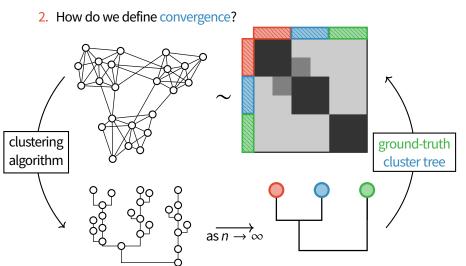
A statistical theory of graphon clustering.

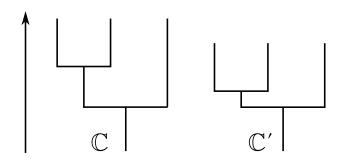
- 1. What is the ground truth clustering of a graphon?
 - ► The mergeon, or, equivalently, the graphon cluster tree.
- 2. How do we define convergence?



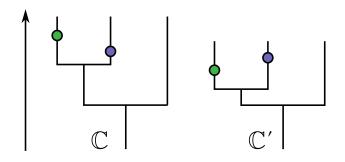
A statistical theory of graphon clustering.

- 1. What is the ground truth clustering of a graphon?
 - ► The mergeon, or, equivalently, the graphon cluster tree.

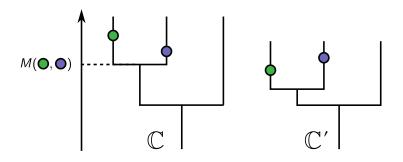




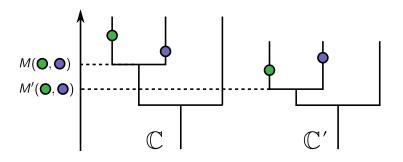
How "close" are \mathbb{C} and \mathbb{C}' ?



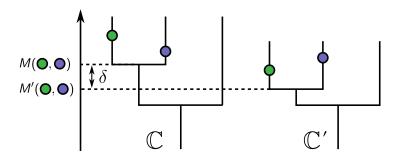
Intuitively, corresponding pairs of nodes should merge at around the same height in each tree.



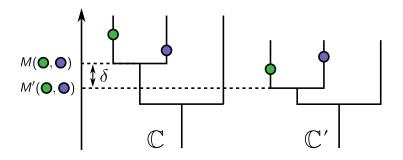
Merge heights are encoded in the mergeon.



Merge heights are encoded in the mergeon.



 $|M(\bigcirc,\bigcirc)-M'(\bigcirc,\bigcirc)|$ is the difference in merge height of \bigcirc , \bigcirc .

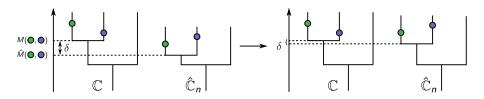


We introduce the merge distortion $d(\mathbb{C}, \mathbb{C}')$: the maximum difference in merge height over all pairs, i.e,

$$d(\mathbb{C},\mathbb{C}') = \max_{\bullet,\bullet} |M(\bullet,\bullet) - M'(\bullet,\bullet)|.$$

Convergence in merge distortion

We say $\hat{\mathbb{C}}_n$ converges in merge distortion to \mathbb{C} if $d(\mathbb{C}, \hat{\mathbb{C}}_n) \to 0$ as $n \to \infty$.



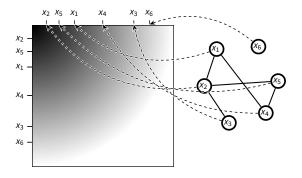
Definition

An algorithm is consistent if its output converges in merge distortion to the graphon cluster tree in probability as $n \to \infty$.

► Consistency \Longrightarrow disjoint clusters are separated as $n \to \infty$.

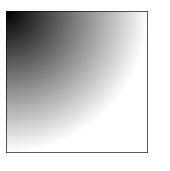
A technical detail...

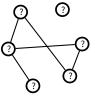
We imagine that the nodes of the graph correspond to graphon nodes.



A technical detail...

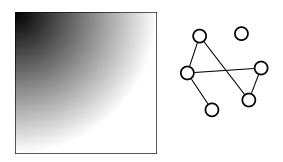
We imagine that the nodes of the graph correspond to graphon nodes. But this correspondence is latent and unrecoverable.





A technical detail...

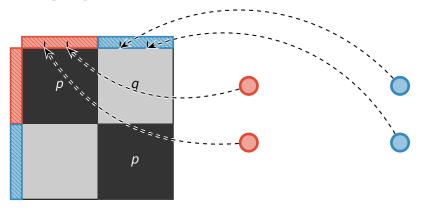
We imagine that the nodes of the graph correspond to graphon nodes. But this correspondence is latent and unrecoverable.



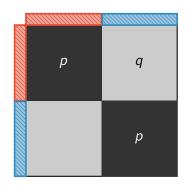
- Need correspondence to compute merge distortion.
- Solution: Compute distortion for all possible correspondences.
- ▶ Set of correspondences which result in large merge distortion shrinks as $n \to \infty$.

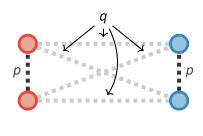
A statistical theory of graphon clustering.

- 1. What is the ground truth clustering of a graphon?
 - ► The mergeon, or, equivalently, the graphon cluster tree.
- 2. How do we define convergence/consistency?
 - Convergence in merge distortion using the mergeon.
- 3. Which clustering algorithms are consistent?

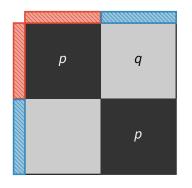


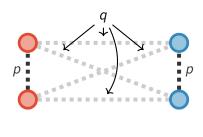
Suppose we sample a graph from this graphon.



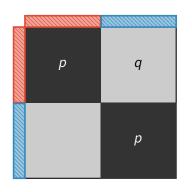


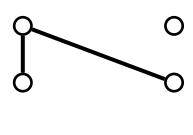
Edges within communities have probability p; edges across communities have probability q.



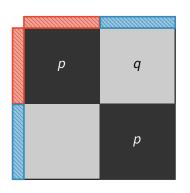


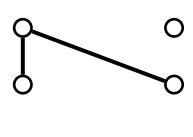
If we knew these edge probabilities we could recover the correct clusters.





But the edge probabilities are unknown and the presence/absence of an edge (i,j) tells us little about its probability, P_{ij} .





But the edge probabilities are unknown and the presence/absence of an edge (i, j) tells us little about its probability, P_{ij} .

Idea: Compute estimate \hat{P} of edge probabilities from a single graph.

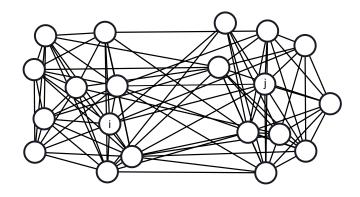
Theorem

If $||P - \hat{P}||_{max} \to 0$ in probability as $n \to \infty$, then single linkage clustering using \hat{P} as the input similarity matrix is a consistent clustering method.

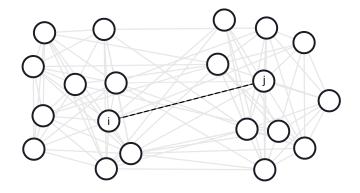
Theorem

If $||P - \hat{P}||_{max} \to 0$ in probability as $n \to \infty$, then single linkage clustering using \hat{P} as the input similarity matrix is a consistent clustering method.

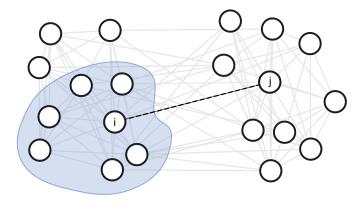
- There are many recent graphon & edge probability estimators.
- But all consistency results are in mean squared error.
- This is too weak. Need consistency in max-norm.
- We modify and analyze the neighborhood smoothing method of (Zhang et al., 2015) to obtain consistency in max-norm.



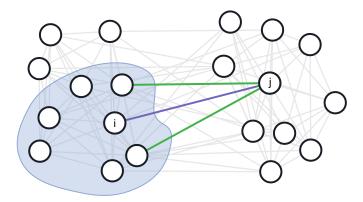
Given this graph...



Given this graph... estimate P_{ij} .



Build a neighborhood N_i of nodes with similar connectivity to that of i.



- Average number edges from node in neighborhood N_i to j.
- ► Estimated edge probability: $\hat{P}_{ij} = \frac{2}{6} = \frac{1}{3}$.

Consistency of neighborhood smoothing.

Theorem

Our modified neighborhood smoothing edge probability estimator for P is consistent in max norm.

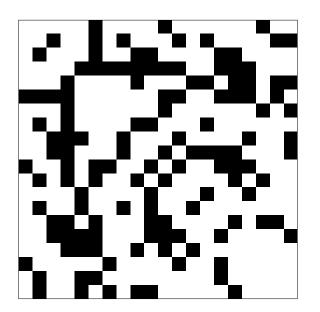
Corollary

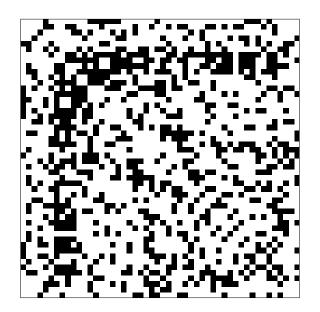
Consistent graphon clustering method:

- Estimate edge probabilities with our modified neighborhood smoothing approach.
- 2. Apply single linkage clustering to estimated edge probabilities.

In summary, we develop a statistical theory of graph clustering in the graphon model:

- 1. We define the clusters of a graphon.
 - The graphon cluster tree/mergeon.
- 2. We develop a notion of consistency.
 - Convergence in merge distortion.
- 3. We provide a consistent algorithm.
 - Modified neighborhood smoothing + single linkage.





Weak isomorphism

- ► Any graphon *W* defines a graph distribution.
- ▶ Not uniquely! Many graphons define the same distribution.
- ► The distribution is uniquely determined up to relabeling of *W*.

Weak isomorphism

- ► Any graphon *W* defines a graph distribution.
- ▶ Not uniquely! Many graphons define the same distribution.
- ► The distribution is uniquely determined up to relabeling of *W*.

Definition

A measure preserving transformation (i.e., graphon relabeling)

 $\varphi:[0,1]\to[0,1]$ is a Lebesgue-measurable function whose preimage preserves measure. That is, $\mu(\varphi^{-1}(A))=\mu(A)$ for all measurable $A\subset[0,1]$.

Notation: $W^{\varphi}(x, y) = W(\varphi(x), \varphi(y))$.

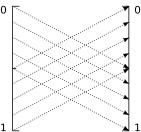
- ► Any graphon *W* defines a graph distribution.
- ▶ Not uniquely! Many graphons define the same distribution.
- ► The distribution is uniquely determined up to relabeling of *W*.

Definition

A measure preserving transformation (i.e., graphon relabeling) $\varphi:[0,1] \to [0,1]$ is a Lebesgue-measurable function whose preimage preserves measure. That is, $\mu(\varphi^{-1}(A)) = \mu(A)$ for all measurable $A \subset [0,1]$.

Notation:
$$W^{\varphi}(x,y) = W(\varphi(x), \varphi(y))$$
.

$$\varphi(x) = \begin{cases} x + \frac{1}{2} & x \le \frac{1}{2}, \\ x - \frac{1}{2} & x > \frac{1}{2} \end{cases}$$



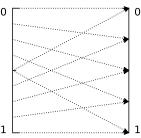
- ► Any graphon *W* defines a graph distribution.
- ▶ Not uniquely! Many graphons define the same distribution.
- ► The distribution is uniquely determined up to relabeling of *W*.

Definition

A measure preserving transformation (i.e., graphon relabeling) $\varphi:[0,1]\to[0,1]$ is a Lebesgue-measurable function whose preimage preserves measure. That is, $\mu(\varphi^{-1}(A))=\mu(A)$ for all measurable $A\subset[0,1]$.

Notation:
$$W^{\varphi}(x, y) = W(\varphi(x), \varphi(y))$$
.

$$\varphi(x) = 2x \mod 1$$



Definition (Lovász)

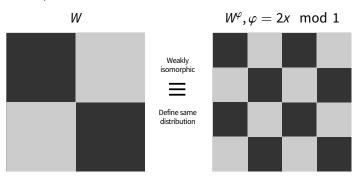
Two graphons W_1 and W_2 are weakly isomorphic if there exist measure preserving transformations φ_1 and φ_2 such that $W_1^{\varphi_1} \stackrel{\text{a.e.}}{=} W_2^{\varphi_2}$.

 \triangleright W_1 and W_2 define the same distribution iff they are weakly isomorphic.

Definition (Lovász)

Two graphons W_1 and W_2 are weakly isomorphic if there exist measure preserving transformations φ_1 and φ_2 such that $W_1^{\varphi_1} \stackrel{\text{a.e.}}{=} W_2^{\varphi_2}$.

• W_1 and W_2 define the same distribution iff they are weakly isomorphic.



The clusters of a graphon

1. Collect all subsets of [0, 1] which should be clustered at λ :

$$\mathfrak{A}_{\lambda} = \{A \subset [0,1] : \mu(A) > 0 \text{ and } A \text{ is connected } \forall \lambda' < \lambda.\}$$

- 2. If $A_1, A_2, A \in \mathfrak{A}_{\lambda}$, and $A_1 \cup A_2 \subset A$, then A_1, A_2 , and A should all be in the same cluster at λ . Consider them equivalent.

$$A_1 \leadsto_{\lambda} A_2 \Longleftrightarrow \exists A \in \mathfrak{A}_{\lambda}, A \supset A_1 \cup A_2.$$

- ▶ Read: A_1 is clustered with A_2 at level λ .
- $\circ \circ_{\mathcal{A}}$ partitions $\mathfrak{A}_{\mathcal{A}}$ into equivalence classes of sets which should be in the same cluster.

The clusters of a graphon

- 3. Define clusters to be "largest" element of each equivalence class.
 - Subtlety in defining "largest":
 - ▶ Suppose $\mathscr{A} \in \mathfrak{A}_{\lambda}/\multimap_{\lambda}$ is such an equivalence class.
 - Let A be any representative from \mathcal{A} , let Z be a set of zero measure.
 - ▶ $A' = A \cup Z$ is a representative of \mathscr{A} .
 - ► In general there is no representative of 𝒜 which strictly contains all other representatives in 𝒜
 - We can find reps. which contain every other rep. up to a null set, called the "essential maxima" of A:

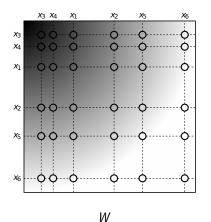
ess max
$$\mathscr{A} = \{A \in \mathscr{A} : \forall A' \in \mathscr{A}, \, \mu(A' \setminus A) = 0\}$$

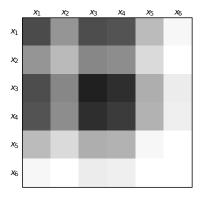
The clusters of W at level λ are the essential maxima of each equivalence class:

$$\mathbb{C}_W(\lambda) = \{ \text{ess max } \mathscr{A} : \mathscr{A} \in \mathfrak{A}_{\lambda} / - \infty_{\lambda} \}$$

Consistent algorithms

- Intuitively, estimating the graphon is related to clustering.
- ► It suffices to estimate the so-called edge probability matrix.

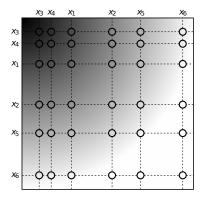




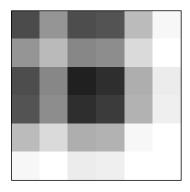
 $P: P_{ij} = W(x_i, x_i)$

Consistent algorithms

- Intuitively, estimating the graphon is related to clustering.
- ► It suffices to estimate the so-called edge probability matrix.



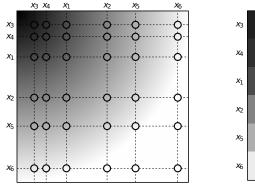
W



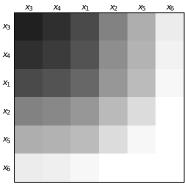
$$P: P_{ij} = W(x_i, x_j)$$

Consistent algorithms

- Intuitively, estimating the graphon is related to clustering.
- ► It suffices to estimate the so-called edge probability matrix.

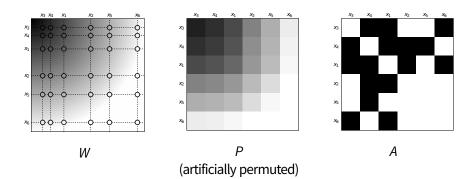


W

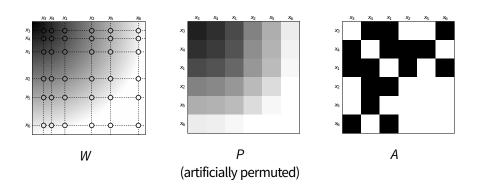


P (artificially permuted)

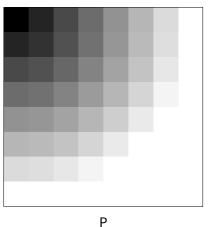
Sample an adjacency matrix *A* from *P*:

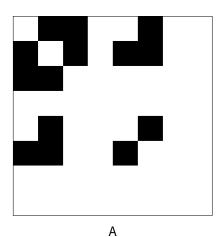


Sample an adjacency matrix A from P:

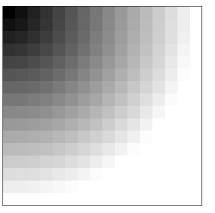


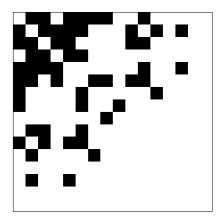
A is a poor estimate of P.





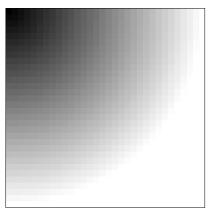
n = 16





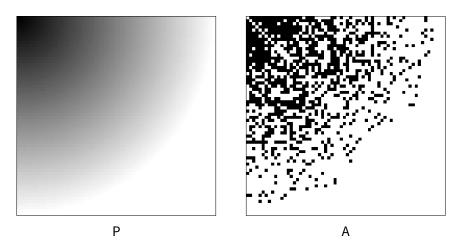
P

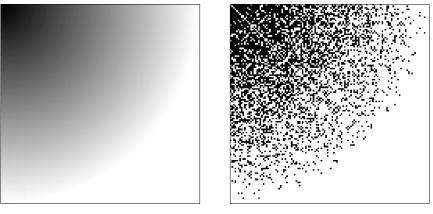
n = 32



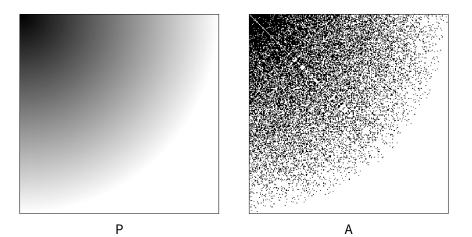


•



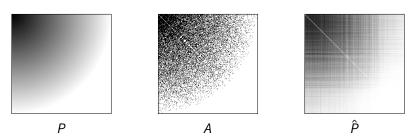


P A



Edge probability estimation

Goal: Compute estimated edge probabilities \hat{P} from A.

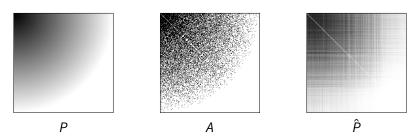


Theorem

If $||P - \hat{P}||_{max} \to 0$ in probability as $n \to \infty$, then single linkage clustering on \hat{P} is a consistent clustering method.

Edge probability estimation

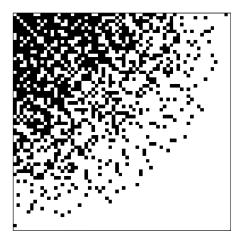
Goal: Compute estimated edge probabilities \hat{P} from A.



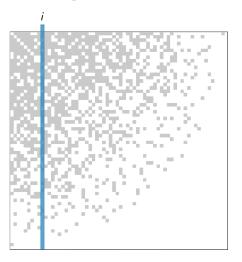
Theorem

If $||P - \hat{P}||_{max} \to 0$ in probability as $n \to \infty$, then single linkage clustering on \hat{P} is a consistent clustering method.

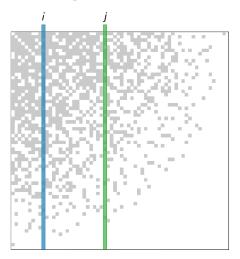
- ▶ We need a suitable estimator \hat{P} of edge probabilities.
- ► Recently, Zhang et al. (2015) proposed neighborhood smoothing.



Given A, the adjacency matrix of a sampled graph...

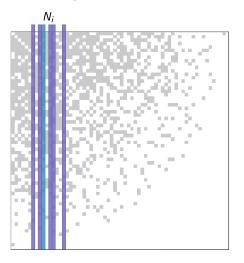


Consider a node *i* and its corresponding column of *A*.

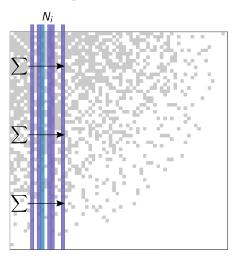


Measure similarity to every other node *j*:

$$d(i,j) = \max_{k \neq i,j} |(A^2)_{ik} - (A^2)_{jk}|$$

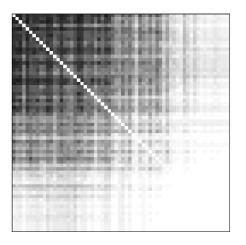


Form neighborhood N_i of nodes most similar to i.



Average within neighborhood to estimate edge probability:

$$\hat{P}_{ij} = \frac{1}{2|N_i|} \sum_{i' \in N_i} A_{i'j} + \frac{1}{2|N_j|} \sum_{j' \in N_j} A_{ij'}$$



The result is a smoothed estimate \hat{P} of edge probabilities.