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In this talk...

0. What do we mean, precisely, by structure?
» The density cluster tree

1. What properties ensure that an algorithm captures it?
» Previously: Hartigan consistency (insufficient)
» Introduce: Minimality and Separation

2. How close is a clustering to the ideal?

> Previously: )
» Introduce: Merge distortion metric
» Show: Convergence < Minimality + Separation

3. Do algorithms with these properties exist?
» Yes. ©



What structure do we wish to recover?

A cluster of a density is a region of high probability.!

'Hartigan (1981), Wishart (1969)...
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Connected components of {f> A\3}?




High-density clusters

A cluster is a connected component of {f> A} for any A > 0.




A hierarchy of clusters

Clusters from higher levels nest within clusters from lower levels.




The density cluster tree

This gives rise to a tree structure called the density cluster tree.

Cs(X) = connected components of {f > A}



What structure do we wish to recover?

This density cluster tree is what we hope to recover from data.

Cs(X) = connected components of {f > A}



Recovering the density cluster tree from data

Draw X,, ~ f. Algorithm produces a collection of empirical clusters.
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Recovering the density cluster tree from data

These clusters have hierarchical structure.
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Recovering the density cluster tree from data

Can represent each cluster as a node in a tree.
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Recovering the density cluster tree from data

In this talk, we'll omit the redundant labels for clarity.
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Recovering the density cluster tree from data

In this talk, we'll omit the redundant labels for clarity.
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Recovering the density cluster tree from data

The height of a node is the density of lowest point it contains.

&3 b3 as ) A
as as 3
. \bl/ b2 ai 22
1

i) i)

Cf Cf,n



Recovering the density cluster tree from data

The height of a node is the density of lowest point it contains.
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Recovering the density cluster tree from data

Goal: As n — o0, the empirical tree should resemble the true tree.
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Recovering the density cluster tree from data

Goal: As n — o0, the empirical tree should resemble the true tree.
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1. What properties ensure that an algorithm captures the density
cluster tree?

» Hartigan (1981) answered: Hartigan consistency.

» Informally: Clusters which are disjoint in the true tree should
be separated in the empirical tree.



Hartigan Consistency

Let A and B be any disjoint ideal clusters.
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Hartigan Consistency

Find A, := the smallest empirical cluster containing AN Xj,.
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Find B, := the smallest empirical cluster containing BN X,,.
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Hartigan Consistency

Find B, := the smallest empirical cluster containing BN X,,.
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Hartigan consistency: As n — oo, Pr(A, is disjoint from B,) — 1.
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Hartigan consistency: As n — oo, Pr(A, is disjoint from B,) — 1.
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Hartigan Consistency

Hartigan consistency: As n — oo, Pr(A, is disjoint from B,) — 1.
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Hartigan consistency: As n — oo, Pr(A, is disjoint from B,) — 1.
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Hartigan Consistency

Hartigan consistency: As n — oo, Pr(A, is disjoint from B,) — 1.
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. What properties ensure that an algorithm captures the density
cluster tree?

» Hartigan consistency

» We'll see shortly that Hartigan consistency is insufficient

» But it is still a desirable property of an algorithm...

. How close is a clustering to the ideal density cluster tree?
» Hartigan consistency is a limit property: doesn't quantify
distance to true tree.

. Do algorithms exist which are Hartigan consistent?

» Hartigan analyzed single linkage clustering, showed that it is
not consistent in d > 1.

> 30 years pass...

» Several algorithms shown to be consistent, including robust
single linkage (Chaudhuri and Dasgupta, 2010) and tree
pruning (Kpotufe and von Luxburg, 2011)
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a

3 b as
3 b-
as as 3

b

ai A bl B 2 ai 22
~ 1

i) X9

T T

Cf Cf,n



Hartigan consistency is insufficient

Hartigan lacks a strong notion of connectedness.

a

3 b as

as ; as bd
b

dis A 61@2 ai 22
N 1

i) X9

I 73

Cf Cf,n



Hartigan consistency is insufficient

This tree does not violate Hartigan consistency!
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Hartigan consistency is insufficient

This tree does not violate Hartigan consistency!
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Hartigan consistency is insufficient

This tree does not violate Hartigan consistency!
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Hartigan consistency is insufficient

What about this tree?
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Hartigan consistency is insufficient

What about this tree? Also consistent!
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Hartigan consistency is insufficient

A tree can be Hartigan consistent yet very different from the true

tree.
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Hartigan consistency lacks connectedness

v

We need a different, stronger notion of consistency

v

We introduce minimality to address connectedness

v

We introduce separation as a weaker form of Hartigan's notion

v

v

Together they'll imply Hartigan consistency
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Minimality
Ctn ensures minimality if given any cluster C of {f> A}, CN X, is
connected at level A — § for any § > 0 as n — oc.
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Separation
AN X, and BN X, should be separated at y + §, with § — 0 as
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Separation
AN X, and BN X, should be separated at y + §, with § — 0 as
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Separation
éﬂn ensures separation if given any disjoint clusters A and B of
{f> A} merging at u, AN X, and BN X, are separated at level
=+ 9 forany 6 > 0 as n — oc.
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Theorem
If a clustering method ensures minimality and separation, then it is
Hartigan consistent.

Minimality and Separation = Hartigan Consistency
Hartigan Consistency =% Minimality and Separation
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1. What properties ensure that an algorithm captures the density
cluster tree?

» We introduce Minimality and Separation
» Minimality addresses shortcomings of Hartigan consistency
» Minimality + Separation => Hartigan Consistency
2. How close is a clustering to the ideal density cluster tree?

» We now introduce a merge distortion metric on cluster trees.
» Convergence will imply minimality and separation.
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Ideal and empirical merge height
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We define the merge distortion metric between the density cluster
tree and its estimate as:

d(Cr,Crp) = max |m(x,X) — m(x,X)].



Theorem
Convergence of Crp, — Cr
is equivalent to
uniform minimality + uniform separation.
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We have introduced minimality, separation, and the merge
distortion metric...

Do algorithms exist which have these properties/converge to the
true density cluster tree?

» We analyze two:
» Robust single linkage from (Chaudhuri and Dasgupta, 2010)

> Split tree-based clustering from computational topology
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Convergence of robust single linkage

» Robust single linkage (Chaudhuri and Dasgupta, 2010):
elegant generalization of single linkage which incorporates
density information

» Authors proved that it is Hartigan consistent

> Also showed that clusters not only separated, but connected
at about the right level

Theorem
Suppose f is c-Lipschitz, compactly supported, and for any A,
{f> A} has finitely-many connected components. Then:
» Robust single linkage converges to the true cluster tree in the
merge distortion metric.



Future work

v

What other algorithms converge in the merge distortion
metric?

v

{5 variant of the metric?

v

Fast algorithms for approximating the distance.

v

Hierarchical clustering without a density — how do we define
distance?
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Summary

1. What properties ensure that an algorithm captures the density
cluster tree?
» We introduce Minimality and Separation
» Minimality addresses shortcomings of Hartigan consistency
» Minimality + Separation = Hartigan Consistency

2. How close is a clustering to the ideal density cluster tree?
» We introduced a merge distortion metric on cluster trees.
» Convergence implies minimality and separation.

3. Do algorithms exist which have these properties/converge to
the true density cluster tree?

> Yes:

> Robust single linkage (Chaudhuri and Dasgupta, 2010)
> Split-tree-based algorithm.



Thank you!



