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The goal of clustering:
Identify structure in data by grouping it into clusters

Assumption: data is drawn from some density.
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The goal of clustering:
Identify structure in data by grouping it into clusters

Assumption: data is drawn from some density.
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Through clustering we hope to recover the structure of the density.

0. What do we mean, precisely, by structure?

▶ The density cluster tree

1. What properties ensure that an algorithm captures it?

▶ Previously:
▶ Introduce: Minimality and Separation

2. How close is a clustering to the ideal?

▶ Previously: ∅
▶ Introduce: Merge distortion metric
▶ Show: Convergence ⇔ Minimality + Separation

3. Do algorithms with these properties exist?

▶ Yes. ☺
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What structure do we wish to recover?

A cluster of a density is a region of high probability.1

1Hartigan (1981), Wishart (1969)...
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High-density clusters

Connected components of {f ≥ λ1}?
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High-density clusters

Connected components of {f ≥ λ2}?
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High-density clusters

Connected components of {f ≥ λ3}?
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High-density clusters

A cluster is a connected component of {f ≥ λ} for any λ > 0.
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A hierarchy of clusters

Clusters from higher levels nest within clusters from lower levels.
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The density cluster tree

This gives rise to a tree structure called the density cluster tree.
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What structure do we wish to recover?

This density cluster tree is what we hope to recover from data.
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Recovering the density cluster tree from data

Draw Xn ∼ f. Algorithm produces a collection of empirical clusters.
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Recovering the density cluster tree from data

These clusters have hierarchical structure.
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Recovering the density cluster tree from data

Can represent each cluster as a node in a tree.
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Recovering the density cluster tree from data

In this talk, we’ll omit the redundant labels for clarity.
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Recovering the density cluster tree from data

In this talk, we’ll omit the redundant labels for clarity.
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Recovering the density cluster tree from data

The height of a node is the density of lowest point it contains.
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Recovering the density cluster tree from data

The height of a node is the density of lowest point it contains.
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Recovering the density cluster tree from data

Goal: As n → ∞, the empirical tree should resemble the true tree.
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Recovering the density cluster tree from data

Goal: As n → ∞, the empirical tree should resemble the true tree.
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Recovering the density cluster tree from data

Goal: As n → ∞, the empirical tree should resemble the true tree.
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1. What properties ensure that an algorithm captures the density
cluster tree?

▶ Hartigan (1981) answered: Hartigan consistency.
▶ Informally: Clusters which are disjoint in the true tree should

be separated in the empirical tree.
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1. What properties ensure that an algorithm captures the density
cluster tree?

▶ Hartigan (1981) answered: Hartigan consistency.

▶ Informally: Clusters which are disjoint in the true tree should
be separated in the empirical tree.
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1. What properties ensure that an algorithm captures the density
cluster tree?

▶ Hartigan (1981) answered: Hartigan consistency.
▶ Informally: Clusters which are disjoint in the true tree should

be separated in the empirical tree.
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Hartigan Consistency

Let A and B be any disjoint ideal clusters.
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Hartigan Consistency

Find An := the smallest empirical cluster containing A ∩ Xn.
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Hartigan Consistency

Find An := the smallest empirical cluster containing A ∩ Xn.
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Hartigan Consistency

Find Bn := the smallest empirical cluster containing B ∩ Xn.
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Hartigan Consistency

Find Bn := the smallest empirical cluster containing B ∩ Xn.
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Hartigan Consistency

Hartigan consistency: As n → ∞, Pr(An is disjoint from Bn) → 1.
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Hartigan Consistency

Hartigan consistency: As n → ∞, Pr(An is disjoint from Bn) → 1.
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Hartigan Consistency

Hartigan consistency: As n → ∞, Pr(An is disjoint from Bn) → 1.
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Hartigan consistency: As n → ∞, Pr(An is disjoint from Bn) → 1.
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Hartigan consistency: As n → ∞, Pr(An is disjoint from Bn) → 1.
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Hartigan Consistency

Hartigan consistency: As n → ∞, Pr(An is disjoint from Bn) → 1.
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Hartigan consistency: As n → ∞, Pr(An is disjoint from Bn) → 1.
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Hartigan consistency: As n → ∞, Pr(An is disjoint from Bn) → 1.
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Hartigan consistency: As n → ∞, Pr(An is disjoint from Bn) → 1.
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Hartigan Consistency

Hartigan consistency: As n → ∞, Pr(An is disjoint from Bn) → 1.

✗



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

1. What properties ensure that an algorithm captures the density
cluster tree?

▶ Hartigan consistency
▶ We’ll see shortly that Hartigan consistency is insufficient
▶ But it is still a desirable property of an algorithm...

2. How close is a clustering to the ideal density cluster tree?

▶ Hartigan consistency is a limit property: doesn’t quantify
distance to true tree.

3. Do algorithms exist which are Hartigan consistent?

▶ Hartigan analyzed single linkage clustering, showed that it is
not consistent in d > 1.

▶ 30 years pass...
▶ Several algorithms shown to be consistent, including robust

single linkage (Chaudhuri and Dasgupta, 2010) and tree
pruning (Kpotufe and von Luxburg, 2011)
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Hartigan consistency is insufficient

Hartigan lacks a strong notion of connectedness.
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Hartigan lacks a strong notion of connectedness.
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Hartigan lacks a strong notion of connectedness.
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Hartigan lacks a strong notion of connectedness.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Hartigan consistency is insufficient

This tree does not violate Hartigan consistency!
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This tree does not violate Hartigan consistency!
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This tree does not violate Hartigan consistency!
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Hartigan consistency is insufficient

What about this tree?
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Hartigan consistency is insufficient

What about this tree? Also consistent!
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Hartigan consistency is insufficient

A tree can be Hartigan consistent yet very different from the true
tree.

✓
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Beyond Hartigan consistency

▶ Hartigan consistency lacks connectedness

▶ We need a different, stronger notion of consistency
▶ We introduce minimality to address connectedness
▶ We introduce separation as a weaker form of Hartigan’s notion
▶ Together they’ll imply Hartigan consistency
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Beyond Hartigan consistency

▶ Hartigan consistency lacks connectedness
▶ We need a different, stronger notion of consistency
▶ We introduce minimality to address connectedness
▶ We introduce separation as a weaker form of Hartigan’s notion
▶ Together they’ll imply Hartigan consistency
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Minimality
C ∩ Xn should be connected at λ− δ, with δ → 0 as n → ∞
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Minimality
C ∩ Xn should be connected at λ− δ, with δ → 0 as n → ∞



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Minimality
C ∩ Xn should be connected at λ− δ, with δ → 0 as n → ∞
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Minimality
C ∩ Xn should be connected at λ− δ, with δ → 0 as n → ∞
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Minimality
Ĉf,n ensures minimality if given any cluster C of {f ≥ λ}, C ∩ Xn is

connected at level λ− δ for any δ > 0 as n → ∞.

{
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Separation
A ∩ Xn and B ∩ Xn should be separated at µ+ δ, with δ → 0 as

n → ∞
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Separation
A ∩ Xn and B ∩ Xn should be separated at µ+ δ, with δ → 0 as

n → ∞
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Separation
A ∩ Xn and B ∩ Xn should be separated at µ+ δ, with δ → 0 as

n → ∞
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Separation
A ∩ Xn and B ∩ Xn should be separated at µ+ δ, with δ → 0 as

n → ∞
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Separation
Ĉf,n ensures separation if given any disjoint clusters A and B of
{f ≥ λ} merging at µ, A ∩ Xn and B ∩ Xn are separated at level

µ+ δ for any δ > 0 as n → ∞.

{
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Theorem
If a clustering method ensures minimality and separation, then it is
Hartigan consistent.

Minimality and Separation =⇒ Hartigan Consistency
Hartigan Consistency ≠⇒ Minimality and Separation
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1. What properties ensure that an algorithm captures the density
cluster tree?

▶ We introduce Minimality and Separation
▶ Minimality addresses shortcomings of Hartigan consistency
▶ Minimality + Separation =⇒ Hartigan Consistency

2. How close is a clustering to the ideal density cluster tree?

▶ We now introduce a merge distortion metric on cluster trees.
▶ Convergence will imply minimality and separation.
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▶ Convergence will imply minimality and separation.
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1. What properties ensure that an algorithm captures the density
cluster tree?

▶ We introduce Minimality and Separation
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2. How close is a clustering to the ideal density cluster tree?
▶ We now introduce a merge distortion metric on cluster trees.

▶ Convergence will imply minimality and separation.
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▶ We now introduce a merge distortion metric on cluster trees.
▶ Convergence will imply minimality and separation.
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Ideal and empirical merge height

▶ The ideal merge height: m(a, b)

▶ The empirical merge height: m̂(a, b)
▶ Minimality: m̂(a, b) > m(a, b)− δ, with δ → 0

▶ Separation: m̂(a, b) < m(a, b) + δ, with δ → 0

▶ Together: m̂(a, b) → m(a, b) as n → ∞
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Ideal and empirical merge height

We define the merge distortion metric between the density cluster
tree and its estimate as:

d(Cf, Ĉf,n) = max
x,x′∈Xn

∣∣m(x, x′)− m̂(x, x′)
∣∣ .
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Theorem
Convergence of Ĉf,n → Cf

is equivalent to
uniform minimality + uniform separation.
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We have introduced minimality, separation, and the merge
distortion metric...

Do algorithms exist which have these properties/converge to the
true density cluster tree?

▶ We analyze two:
▶ Robust single linkage from (Chaudhuri and Dasgupta, 2010)
▶ Split tree-based clustering from computational topology
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We have introduced minimality, separation, and the merge
distortion metric...

Do algorithms exist which have these properties/converge to the
true density cluster tree?

▶ We analyze two:
▶ Robust single linkage from (Chaudhuri and Dasgupta, 2010)
▶ Split tree-based clustering from computational topology
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Convergence of robust single linkage

▶ Robust single linkage (Chaudhuri and Dasgupta, 2010):
elegant generalization of single linkage which incorporates
density information

▶ Authors proved that it is Hartigan consistent
▶ Also showed that clusters not only separated, but connected

at about the right level

Theorem
Suppose f is c-Lipschitz, compactly supported, and for any λ,
{f ≥ λ} has finitely-many connected components. Then:

▶ Robust single linkage converges to the true cluster tree in the
merge distortion metric.
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Future work

▶ What other algorithms converge in the merge distortion
metric?

▶ ℓ2 variant of the metric?
▶ Fast algorithms for approximating the distance.
▶ Hierarchical clustering without a density – how do we define

distance?
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Summary

1. What properties ensure that an algorithm captures the density
cluster tree?

▶ We introduce Minimality and Separation
▶ Minimality addresses shortcomings of Hartigan consistency
▶ Minimality + Separation =⇒ Hartigan Consistency

2. How close is a clustering to the ideal density cluster tree?
▶ We introduced a merge distortion metric on cluster trees.
▶ Convergence implies minimality and separation.

3. Do algorithms exist which have these properties/converge to
the true density cluster tree?

▶ Yes:
▶ Robust single linkage (Chaudhuri and Dasgupta, 2010)
▶ Split-tree-based algorithm.
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Thank you!


