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Assumption: data is generated by some source with structure. This
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Theory of clustering

Given a data source (i.e., a density):

I How is a cluster defined?

I What cluster structure do we wish to recover?



How do we define a cluster of a density f ?

A region of high density: Hartigan (1981), Wishart (1969)...



High-density clusters

Connected components of {f ≥ λ1}?
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High-density clusters

Connected components of {f ≥ λ3}?



High-density clusters

A cluster is a connected component of {f ≥ λ} for any λ > 0.



A hierarchy of clusters

Clusters from higher levels nest within clusters from lower levels.



The density cluster tree

This gives rise to a tree structure called the density cluster tree.
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I Algorithm outputs finite cluster tree Ĉf ,n whose nodes are
empirical clusters.
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1. identifying the properties desirable in a clustering,

2. introducing a metric on cluster trees,

3. showing that convergence implies our properties,

4. proving convergence for two algorithms.
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1. What properties ensure that an algorithm captures the true
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Hartigan consistency

To answer this, Hartigan (1981) defined notion of consistency:

I A density f supported on X
I A sample Xn ∼ f

I A method producing an estimate Ĉf ,n of the density cluster
tree

A method is Hartigan consistent if as n→∞, any two disjoint
clusters in the density cluster tree of f are kept separate by Ĉf ,n



Hartigan consistency

I Notation: For any set A ⊂ X , let An denote the smallest
cluster of Ĉf ,n containing A ∩ Xn

I An is the “tightest” empirical cluster recovering A

I Consistency: whenever A and B are different connected
components of {f ≥ λ}, Pr(An is disjoint from Bn)→ 1 as
n→∞.
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Are there algorithms which are Hartigan consistent?

I Hartigan analyzed single linkage, showed that it is not
consistent in d > 1

I 30 years pass...
I Several algorithms have been shown to be consistent:

I Robust single linkage (Chaudhuri and Dasgupta, 2010)
I Tree pruning (Kpotufe and von Luxburg, 2011)

I And so these capture the structure of the density cluster tree

I Or maybe not...
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1. Over-segmentation
2. Improper nesting
3. Laziness
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Issue #1: Over-segmentation



Issue #2: Improper nesting



Issue #3: Laziness



The root cause: non-minimality

We identify over-segmentation, improper nesting, and laziness as
manifestations of one issue: non-minimality

Definition (Non-minimality)

I Let C be a connected component of {f ≥ λ}.
I Let Cn be the smallest empirical cluster containing all of

C ∩ Xn

I Cn is non-minimal if it contains extra points that aren’t in C



The root cause: non-minimality

We identify over-segmentation, improper nesting, and laziness as
manifestations of one issue: non-minimality

Definition (Non-minimality)

I Let C be a connected component of {f ≥ λ}.
I Let Cn be the smallest empirical cluster containing all of

C ∩ Xn

I Cn is non-minimal if it contains extra points that aren’t in C



Non-minimality

over-segmentation

improper nesting laziness



δ-non-minimality

is better than

Definition (δ-non-minimality)

I Let C be a connected component of {f ≥ λ}.
I Let Cn be the smallest empirical cluster containing all of

C ∩ Xn

I We say that Cn is δ-non-minimal if minx∈Cn f (x) < λ− δ.

We want δ → 0 as n→∞!
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1. What properties ensure that an algorithm captures the true
density cluster tree?

I Hartigan consistency is not sufficient

I We introduce two new properties: minimality and separation
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Cluster tree with height function

Definition
A cluster tree with a height function is a triple C = (X , C, h),
where:

I X is a set of objects,

I C is a cluster tree of X ,

I and h : X → R is a height function mapping each point in X
to a “height”.

We define the height of a cluster C ∈ C to be the infimal height of
any point in the cluster. That is, h(C ) = infx∈C h(x).



Cluster tree with height function

h({b3}) = f (b3) h({b2, b3}) = f (b2) h({b1, b2, b3}) = f (b1)



Connectedness and separation

Definition

I Points x and x ′ are connected at level λ if there is a cluster C
containing both, with h(C ) ≥ λ

I Otherwise they are separated at level λ

I A set S is connected at level λ if any two points s, s ′ ∈ S are
connected at level λ

I Sets S and S ′ are separated at level λ if for any s ∈ S ,
s ′ ∈ S ′, s and s ′ are separated at level λ
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Merge height

Definition
The merge height of two points x and x ′, written mC(x , x ′), is the
height of the smallest cluster containing both.

mĈf ,n(a3, b3) = h(Xn − {x1})

mĈf ,n(a2, a3) = h({a2, a3})



Non-minimality revisited

Recall:

Definition (δ-non-minimality)

I Let A be a connected component of {f ≥ λ}.
I Let An be the smallest cluster of Ĉf ,n containing all of A ∩ Xn

I We say that An is δ-non-minimal if minx∈An f (x) < λ− δ.

In other words:

I We say that An is δ-non-minimal if h(An) < λ− δ
I That is, A ∩ Xn is not connected at level λ− δ

We want A ∩ Xn to be connected at level λ− δ, with δ small.
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Minimality

Definition (Minimality)

A method ensures minimality if given any cluster A of {f ≥ λ},
A ∩ Xn is connected at level λ− δ in Ĉf ,n for any δ > 0 as n→∞
Where:

I f is a density supported on X
I Xn ∼ f

I Ĉf ,n is an estimate of the true cluster tree, equipped with f as
a height function



Minimality



Separation

Definition (Separation)

A method ensures separation if when A and B are two disjoint
connected components of {f ≥ λ} merging at µ = mCf

(A ∪ B),
A ∩ Xn and B ∩ Xn are separated at level µ+ δ in Ĉf ,n for any
δ > 0 as n→∞.

Where:

I f is a density supported on X
I Xn ∼ f

I Ĉf ,n is an estimate of the true cluster tree, equipped with f as
a height function



Separation



Minimality + separation =⇒ Hartigan consistency

Theorem
If a hierarchical clustering method ensures both separation and
minimality, then it is Hartigan consistent.



Uniform minimality and separation

Definition
We say that Ĉf ,n ensures uniform minimality if given any δ > 0
there exists an N depending only on δ such that for all n ≥ N and
all λ, any cluster A ∈ {x ∈ X : f (x) ≥ λ} is connected at level
λ− δ.

Definition
Ĉf ,n is said to ensure uniform separation if given any δ > 0 there
exists an N depending only on δ such that for all n ≥ N and all µ,
any two disjoint connected components merging in
{x ∈ X : f (x) ≥ µ} are separated at level µ+ δ.



Uniform minimality and separation

Theorem
If the density f is:

I bounded from above,

I such that {f ≥ λ} contains finitely many connected
components for any λ,

then

I minimality =⇒ uniform minimality

I separation =⇒ uniform separation



Theory of clustering a density

1. What properties ensure that an algorithm captures the true
density cluster tree?

I Minimality and separation

2. How “close” is a clustering to the ideal density cluster tree?

3. Do algorithms exist which have these properties/converge to
the true density cluster tree?
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Merge distortion metric

I We have introduced two desirable limit properties: minimality
and separation

I But we may want a quantitative measure of convergence

I We introduce a distance between the true cluster tree and an
estimate

I Convergence will imply minimality and separation



Merge distortion metric

At what height do a and a′ merge in Ĉf ,n?

I Minimality: M connected at µ− δ, with δ → 0

I Separation: A and A′ separated at µ+ δ, with δ → 0

I Minimality + separation =⇒ mĈf ,n
(a, a′) = µ± δ



Merge distortion metric

We define the merge distortion metric as:

d(Cf , Ĉf ,n) = max
x ,x ′∈Xn

|mCf
(x , x ′)−mĈf ,n

(x , x ′)|.

where:

I Xn ∼ f

I Cf is the true cluster tree of f

I Ĉf ,n is the estimated cluster tree

I Each tree is equipped with f as height function

I mCf
and mĈf ,n

are the merge heights in Cf and Ĉf ,n



Convergence to the density cluster tree

Definition
We say that a sequence of cluster trees {Ĉf ,n} converges to the

high density cluster tree Cf of f , written Ĉf ,n → Cf , if for any

ε > 0 there exists an N such that for all n ≥ N, d(Ĉf ,n,Cf ) < ε.

Note
Convergence in the merge distortion metric implies that for any
two points x and x ′, |mCf

(x , x ′)−mĈf ,n
(x , x ′)| → 0 as n→∞.



Properties of convergence

Theorem
Ĉf ,n → Cf implies 1) uniform minimality and 2) uniform
separation.

Theorem
If Ĉf ,n ensures uniform separation and uniform minimality, then

Ĉf ,n → Cf .
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Merge distortion metric (general cluster trees)

Definition
Let C1 = (X1, C1, h1) and C2 = (X2, C2, h2) be two hierarchical
clusterings equipped with height functions. Let S1 ⊂ X1 and
S2 ⊂ X2. Let γ ⊂ S1 × S2 be a correspondence between S1 and S2.
The distance between C1 and C2 with respect to γ is defined as

dγ(C1,C2) = max
(x1,x2),(x ′1,x

′
2)∈γ
|mC1(x1, x

′
1)−mC2(x2, x

′
2)|



L∞-stability of true cluster tree

Theorem

I Given a density f : X → R and a perturbed density f̃ : X → R
I Let Cf and Cf̃ be density cluster trees

I Let Cf := (X , Cf , f ) and Cf̃ := (X , Cf̃ , f̃ ) be the cluster trees
equipped with height functions

Then we have d(Cf ,Cf̃ ) ≤ ‖f − f̃ ‖∞



L∞-stability w.r.t. f

Theorem
Let C1 := (X , C, f1) and C2 := (X , C, f2) be two cluster trees with
height functions. Then we have d(C1,C2) ≤ 2‖f1 − f2‖∞.

Some implications:

I If f̂ is a consistent density estimate, then true cluster tree of f̂
converges to true cluster tree of f

I Then estimated cluster tree of f̂ converges to true cluster tree
of f

I This justifies sampling points until distance between
consecutive estimated cluster trees is small



Theory of clustering a density

1. What properties ensure that an algorithm captures the true
density cluster tree?
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Are there algorithms which converge in our metric?

I Convergence in the merge distortion metric implies several
nice properties.

I Do algorithms exist which have these properties?

I Kleinberg makes us nervous...
I Gave three desirable properties

1. Scale invariance
2. Richness
3. Consistency

I Showed that no algorithm exists

I But indeed there are. We analyze two:
I Split tree clustering
I Robust single linkage (Chaudhuri and Dasgupta, 2010)
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Robust single linkage (Chaudhuri and Dasgupta, 2010)

Given a sample Xn of n points, and parameters α and k :

1. For each xi ∈ Xn, set rk(xi ) to be the distance from xi to its
kth neighbor.

2. As r grows from 0 to ∞:
I Construct a graph Gr with nodes {xi : rk(xi ) ≤ r}.
I Include edge (xi , xj) if ‖xi − xj‖ ≤ αr .
I The clusters at time r are the connected components of Gr .

Output is a finite cluster tree.
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I Robust single linkage is Hartigan consistent

I It also converges to the true tree in our metric

Theorem
Suppose f is L-Lipschitz, compactly supported, and for any λ,
{f ≥ λ} has finitely-many connected components
Then:

I Robust single linkage ensures uniform minimality and uniform
separation

I Therefore robust single linkage converges to the true cluster
tree in the merge distortion metric
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