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The goal of clustering:

Identify structure in data by grouping it into clusters

Assumption: data is generated by some source with structure. This
structure is what we actually want to recover.



Theory of clustering

Given a data source (i.e., a density):
» How is a cluster defined?

» What cluster structure do we wish to recover?



How do we define a cluster of a density 7

A region of high density: Hartigan (1981), Wishart (1969)...
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Connected components of {f > A1}?
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High-density clusters

Connected components of {f > A3}?




High-density clusters

A cluster is a connected component of {f > A} for any A > 0.




A hierarchy of clusters

Clusters from higher levels nest within clusters from lower levels.




The density cluster tree

This gives rise to a tree structure called the density cluster tree.

Cs(X) = connected components of {f > A}
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Theory of clustering a density

Given a density:
» How is a cluster defined?

» A region of high density.
» Formally: A connected component of a superlevel set.

» What cluster structure do we wish to recover?
» The density cluster tree.



Theory of clustering a density

» But... We typically do not have access to the density.

> Recover density cluster tree Cr by clustering finite data.

» Algorithm outputs finite cluster tree CAfy,, whose nodes are
empirical clusters.




Theory of clustering a density

» But... We typically do not have access to the density.

> Recover density cluster tree Cr by clustering finite data.

» Algorithm outputs finite cluster tree CAfy,, whose nodes are
empirical clusters.

Crn

Cr,n is a collection of clusters with hierarchical structure



Theory of clustering a density

1. What properties ensure that an algorithm captures the true
density cluster tree?



Theory of clustering a density

1. What properties ensure that an algorithm captures the true
density cluster tree?

2. How “close” is a clustering to the ideal density cluster tree?



Theory of clustering a density

1. What properties ensure that an algorithm captures the true
density cluster tree?

2. How “close” is a clustering to the ideal density cluster tree?

3. Do algorithms exist which have these properties/converge to
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Theory of clustering a density: our contributions

We answer these questions by:
identifying the properties desirable in a clustering,

[y

2. introducing a metric on cluster trees,
3. showing that convergence implies our properties,
4

. proving convergence for two algorithms.



Theory of clustering a density

1. What properties ensure that an algorithm captures the true
density cluster tree?

2. How “close” is a clustering to the ideal density cluster tree?

3. Do algorithms exist which have these properties/converge to
the true density cluster tree?



Hartigan consistency

To answer this, Hartigan (1981) defined notion of consistency:
» A density f supported on X
» Asample X, ~ f

» A method producing an estimate CAf,,, of the density cluster
tree

A method is Hartigan consistent if as n — oo, any two disjoint
clusters in the density cluster tree of f are kept separate by Cr ,
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» Notation: For any set A C X, let A, denote the smallest
cluster of Cr , containing AN X,
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Hartigan consistency

» Notation: For any set A C X, let A, denote the smallest
cluster of Cr , containing AN X,

> A, is the “tightest” empirical cluster recovering A

» Consistency: whenever A and B are different connected
components of {f > A}, Pr(A, is disjoint from B,) — 1 as
n— oo.



Are there algorithms which are Hartigan consistent?

» Hartigan analyzed single linkage, showed that it is not
consistent in d > 1
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Hartigan analyzed single linkage, showed that it is not
consistent in d > 1

v

30 years pass...
Several algorithms have been shown to be consistent:

» Robust single linkage (Chaudhuri and Dasgupta, 2010)
» Tree pruning (Kpotufe and von Luxburg, 2011)
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Are there algorithms which are Hartigan consistent?

v

Hartigan analyzed single linkage, showed that it is not
consistent in d > 1

v

30 years pass...
Several algorithms have been shown to be consistent:

» Robust single linkage (Chaudhuri and Dasgupta, 2010)
» Tree pruning (Kpotufe and von Luxburg, 2011)

v

v

And so these capture the structure of the density cluster tree

v

Or maybe not...



» Hartigan consistency is clearly desirable
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» Hartigan consistency is clearly desirable
> But is it sufficient?

» Three ways to be consistent, yet very different than true tree:
1. Over-segmentation
2. Improper nesting
3. Laziness



Issue #1: Over-segmentation




Issue #2: Improper nesting




Issue #3: Laziness




The root cause: non-minimality

We identify over-segmentation, improper nesting, and laziness as
manifestations of one issue: non-minimality



The root cause: non-minimality

We identify over-segmentation, improper nesting, and laziness as
manifestations of one issue: non-minimality

Definition (Non-minimality)

> Let C be a connected component of {f > A}.

» Let C, be the smallest empirical cluster containing all of
cnX,

» C, is non-minimal if it contains extra points that aren’t in C




Non-minimality

over-segmentation

@D, @i,

improper nesting laziness
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d-non-minimality

)\ /C'\\CLQ is better than
C c,

Definition (J-non-minimality)

> Let C be a connected component of {f > A}.

» Let C, be the smallest empirical cluster containing all of
CnX,

» We say that G, is d-non-minimal if minyec, f(x) < XA — 6.



d-non-minimality

)\ /C'\\CLQ is better than
C c,

Definition (J-non-minimality)

> Let C be a connected component of {f > A}.

» Let C, be the smallest empirical cluster containing all of
CnX,

» We say that G, is d-non-minimal if minyec, f(x) < XA — 6.

We want § — 0 as n — oo!
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Theory of clustering a density

1. What properties ensure that an algorithm captures the true
density cluster tree?

» Hartigan consistency is not sufficient

» We introduce two new properties: minimality and separation
» We show that minimality + separation = consistency

» But first we need some definitions...



Cluster tree with height function

Definition
A cluster tree with a height function is a triple C = (X, C, h),
where:

» X is a set of objects,

» C is a cluster tree of X,

» and h: X — R is a height function mapping each point in X

to a “height”.

We define the height of a cluster C € C to be the infimal height of
any point in the cluster. That is, h(C) = inf,cc h(x).



Cluster tree with height function
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h({bs}) = f(bs)  h({b2,b3}) = f(b2)  h({b1, b2, b3}) = f(b1)



Connectedness and separation

Definition

» Points x and x’ are connected at level )\ if there is a cluster C
containing both, with h(C) > A

» Otherwise they are separated at level A



Connectedness and separation

Definition
» Points x and x’ are connected at level \ if there is a cluster C
containing both, with h(C) > A
» Otherwise they are separated at level A
» A set S is connected at level \ if any two points s,s' € S are
connected at level A

» Sets S and S’ are separated at level \ if for any s € S,
s’ €S’ s and s’ are separated at level \



Merge height

Definition
The merge height of two points x and x’, written mc(x, x’), is the
height of the smallest cluster containing both.

@ O
CADENCED
@ @ méﬂn(33, b3) = h(Xn - {Xl})
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Non-minimality revisited

Recall:
Definition (d-non-minimality)

» Let A be a connected component of {f > A}.
» Let A, be the smallest cluster of CAf,,, containing all of AN X,
» We say that A, is d-non-minimal if minyea, f(x) < A — 9.

In other words:
» We say that A, is 0-non-minimal if h(A,) < A—4¢
» That is, AN X, is not connected at level A — ¢



Non-minimality revisited

Recall:
Definition (d-non-minimality)
» Let A be a connected component of {f > A}.

» Let A, be the smallest cluster of CAf,,, containing all of AN X,
» We say that A, is d-non-minimal if minyea, f(x) < A — 9.

In other words:
» We say that A, is 0-non-minimal if h(A,) < A—4¢
» That is, AN X, is not connected at level A — ¢

We want AN X, to be connected at level A — §, with § small.



Minimality

Definition (Minimality)

A method ensures minimality if given any cluster A of {f > A},
AN X, is connected at level A — 4 in C¢, for any 6 >0 as n — oo
Where:

> f is a density supported on X

> X, ~f

> éﬂn is an estimate of the true cluster tree, equipped with f as
a height function



Minimality




Separation

Definition (Separation)

A method ensures separation if when A and B are two disjoint
connected components of {f > A} merging at ;1 = mc,(AU B),
AN X, and BN X, are separated at level ;1 + 9 in C¢ , for any
0 >0as n— oo.

Where:
» f is a density supported on X
> X, ~f

> Cﬁn is an estimate of the true cluster tree, equipped with f as
a height function



Separation




Minimality + separation = Hartigan consistency

Theorem
If a hierarchical clustering method ensures both separation and
minimality, then it is Hartigan consistent.



Uniform minimality and separation

Definition

We say that Cf’,, ensures uniform minimality if given any § > 0
there exists an N depending only on ¢ such that for all n > N and
all A, any cluster A € {x € X' : f(x) > A} is connected at level
A—0.

Definition

éﬂn is said to ensure uniform separation if given any § > 0 there
exists an N depending only on ¢ such that for all n > N and all y,
any two disjoint connected components merging in

{x € X : f(x) > p} are separated at level p + 6.



Uniform minimality and separation

Theorem
If the density f is:

» bounded from above,

» such that {f > A} contains finitely many connected
components for any A,

then
» minimality => uniform minimality

> separation = uniform separation
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Theory of clustering a density

1. What properties ensure that an algorithm captures the true
density cluster tree?

» Minimality and separation

2. How “close” is a clustering to the ideal density cluster tree?

3. Do algorithms exist which have these properties/converge to
the true density cluster tree?



Merge distortion metric

» We have introduced two desirable limit properties: minimality
and separation

> But we may want a quantitative measure of convergence

» We introduce a distance between the true cluster tree and an
estimate

» Convergence will imply minimality and separation



Merge distortion metric

At what height do a and a’ merge in Cﬁn?

» Minimality: M connected at p — §, with § — 0
» Separation: A and A’ separated at p + §, with § — 0
> Minimality + separation = me_ (a, d)=pu+o



Merge distortion metric

We define the merge distortion metric as:
d(Cy, Cﬂn) = X,T%))((,, |mc, (x,x") — méf7n(x,x’)|.
where:
> X, ~ f
» Cy is the true cluster tree of f
> (A:f’,, is the estimated cluster tree
» Each tree is equipped with f as height function

» mc, and me, are the merge heights in C¢ and é,g,,



Convergence to the density cluster tree

Definition

We say that a sequence of cluster trees {Cy ,} converges to the
high density cluster tree C¢ of f, written éf,,, — Cy, if for any

€ > 0 there exists an N such that for all n > N, d((Ajf’,,, Cr)<e.

Note
Convergence in the merge distortion metric implies that for any
two points x and x', |mc,(x,x") — me_ (x,x")| = 0 as n — oo.



Properties of convergence

Theorem
Cr,n — Cr implies 1) uniform minimality and 2) uniform
separation.



Properties of convergence

Theorem
Cr,n — Cr implies 1) uniform minimality and 2) uniform
separation.

Theorem
If C¢ n ensures uniform separation and uniform minimality, then
Cf’,, — Cf.



Merge distortion metric (general cluster trees)

Definition

Let C; = (X1,C1, h1) and Cp = (X2,Ca, h2) be two hierarchical
clusterings equipped with height functions. Let $; C Xi and

S, C Xp. Let v C 51 X S be a correspondence between S; and S,.
The distance between C; and C, with respect to +y is defined as

dW(Clv C2) = max ‘mcl(Xl, X{) - mcz(X2, Xé)’
(x1.x2), (4 2g) €y



L -stability of true cluster tree

Theorem
» Given a density f : X — R and a perturbed density f:Xx >R
» Let Cr and C; be density cluster trees
» Let C¢:= (X,Cr,f) and C; := (X, Cy, f) be the cluster trees
equipped with height functions

Then we have d(Cr, Cz) < ||f — flloo



L-stability w.r.t. f

Theorem

Let C; :=(X,C, 1) and Cy := (X,C, ) be two cluster trees with
height functions. Then we have d(Cy,Cz) < 2||i — |-

Some implications:

» If f is a consistent density estimate, then true cluster tree of f
converges to true cluster tree of f

» Then estimated cluster tree of converges to true cluster tree
of f

» This justifies sampling points until distance between
consecutive estimated cluster trees is small
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Are there algorithms which converge in our metric?

v

Convergence in the merge distortion metric implies several
nice properties.

v

Do algorithms exist which have these properties?

v

Kleinberg makes us nervous...
» Gave three desirable properties

1. Scale invariance
2. Richness
3. Consistency

» Showed that no algorithm exists

v

But indeed there are. We analyze two:

» Split tree clustering
» Robust single linkage (Chaudhuri and Dasgupta, 2010)



Robust single linkage (Chaudhuri and Dasgupta, 2010)

Given a sample X, of n points, and parameters « and k:

1. For each x; € X,, set rx(x;) to be the distance from x; to its
kth neighbor.
2. As r grows from 0 to oo:
» Construct a graph G, with nodes {x; : re(x;) < r}.
» Include edge (x;, x;) if || x; — x| < ar.
» The clusters at time r are the connected components of G,.



Robust single linkage (Chaudhuri and Dasgupta, 2010)

Given a sample X, of n points, and parameters « and k:

1. For each x; € X,, set rx(x;) to be the distance from x; to its
kth neighbor.
2. As r grows from 0 to oo:
» Construct a graph G, with nodes {x; : re(x;) < r}.
» Include edge (x;, x;) if || x; — x| < ar.
» The clusters at time r are the connected components of G,.

Output is a finite cluster tree.
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Convergence of robust single linkage

» Robust single linkage is Hartigan consistent

> It also converges to the true tree in our metric

Theorem

Suppose f is L-Lipschitz, compactly supported, and for any A,

{f > A} has finitely-many connected components
Then:

» Robust single linkage ensures uniform minimality and uniform
separation

» Therefore robust single linkage converges to the true cluster
tree in the merge distortion metric
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Theory of clustering a density

1. What properties ensure that an algorithm captures the true
density cluster tree?

» Hartigan-consisteney (allows non-minimality)

» Minimality and separation
» Minimality 4 separation = Hartigan

2. How “close” is a clustering to the ideal density cluster tree?
» Merge distortion metric
» Convergence <= (uniform) minimality and separation

3. Do algorithms exist which have these properties/converge to
the true density cluster tree?

» Robust single linkage



