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Abstract

Clustering is the task of organizing data into natural groups, or clusters. A central

goal in developing a theory of clustering is the derivation of correctness guarantees which

ensure that clustering methods produce the right results. In this dissertation, we analyze

the setting in which the data are sampled from some underlying probability distribution.

In this case, an algorithm is “correct” (or consistent) if, given larger and larger data sets,

its output converges in some sense to the ideal cluster structure of the distribution.

In the first part, we study the setting in which data are drawn from a probability

density supported on a subset of a Euclidean space. The natural cluster structure of the

density is captured by the so-called high density cluster tree, which is due to Hartigan

(1981). Hartigan introduced a notion of convergence to the density cluster tree, and recent

work by Chaudhuri and Dasgupta (2010) and Kpotufe and Luxburg (2011) has contructed

algorithms which are consistent in this sense.

We will show that Hartigan’s notion of consistency is in fact not strong enough to

ensure that an algorithm recovers the density cluster tree as we would intuitively expect.

We identify the precise deficiency which allows this, and introduce a new, stronger notion of

convergence which we call consistency in merge distortion. Consistency in merge distortion

implies Hartigan’s consistency, and we prove that the algorithm of Chaudhuri and Dasgupta

(2010) satisfies our new notion.

In the sequel, we consider the clustering of graphs sampled from a very general, non-

parametric random graph model called a graphon. Unlike in the density setting, clustering in

the graphon model is not well-studied. We therefore rigorously analyze the cluster structure

of a graphon and formally define the graphon cluster tree. We adapt our notion of consistency

in merge distortion to the graphon setting and identify efficient, consistent algorithms.
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Chapter 1

Introduction: clustering formalized

The world around us is increasingly data-driven. Scientific hypotheses, medical diagnoses,

business decisions, and engineering designs are made by gathering and analyzing a wealth of

data in search of meaningful and predictive patterns. As such, machine learning algorithms

– methods capable of automatically identifying trends in data – have been the subject of in-

tense recent study. This dissertation concerns fundamental questions about the capabilities

and limitations of such learning algorithms.

In particular, this work studies algorithms which recover cluster structure; i.e., methods

which find natural groups or clusters in data. Cluster structure is frequently evident in real-

world information. The brain of C. elegans, the power grid of the western U.S., and the

collaboration network of film actors each have interesting and interpretable group structure

(Watts and Strogatz, 1998). Moreover, finding the clusters in data is crucial in many

applications. Preventing the spread of infectious diseases in urban environments is aided by

clustering the population according to social interactions (Eubank et al., 2004). Retailers

make product recommendations by grouping customers according to the similarity of their

previous purchases (Ungar and Foster, 1998). And important advances in the study and

diagnosis of cancer have been made through clustering microRNA samples (Lu et al., 2005).

It is striking that Nature should so often give rise to cluster structure, and it is fascinating

that such structure should be useful for understanding and predicting Nature itself. Given

the effectiveness of cluster analysis, we are motivated to ask the fundamental questions:

What sort of cluster structure can feasibly be recovered from data? How do we interpret

the clusters returned by a clustering method? What does the “correct” clustering look like,
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and does an algorithm exist which produces it? It is perhaps surprising that answers are

often scarce and significantly limited in scope. Without understanding these questions, the

usage of clustering methods in practice can be distressingly ad hoc.

The aim of this dissertation is to improve the theoretical footing of clustering by proving

strong correctness results for algorithms. In order to do so, we first seek a more formal

definition of clustering. In their seminal book, Jain and Dubes (1988) define clustering

as the “process of classifying objects into subsets that have meaning in the context of a

particular problem.” But more precisely, what sort of mathematical object is a clustering,

and how do we rigorously define the goal of clustering in any particular application?

1.1 Flat vs. hierarchical

As a mathematical object, a clustering of a finite set of objects X is a collection of subsets

of X . It is often the case that this clustering is flat:

Definition 1.1. A flat clustering of a finite set X is a partition of X . That is, it is a

collection C of non-empty subsets of X such that
∪
C = X and any two distinct elements

C,C ′ ∈ C are disjoint. An element C ∈ C is called a cluster.

Alternatively, we may consider clusterings whose clusters are nested, thereby capturing

group structure at several scales simultaneously. We say that such clusterings are hierar-

chical:

Definition 1.2. A hierarchical clustering (or cluster tree) of a finite set X is a collection C

of non-empty subsets of X such that X ∈ C and for any distinct C,C ′ ∈ C, either C ⊂ C ′,

C ′ ⊂ C, or C ∩ C ′ = ∅. An element C ∈ C is called a cluster.

We note that our definition of a hierarchical clustering differs from some sources in that

it does not require each object x ∈ X to appear as a singleton cluster {x} in C.

There is a natural order on the clusters in a hiearchical clustering which allows us to

interpret it as a directed tree. The root of this tree corresponds to the cluster X . There is
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a directed edge from cluster C to cluster C ′ if and only if C ′ ⊂ C. We will often emphasize

this interpretation of a hierarchical clustering C by calling C a cluster tree.

1.1.1 Single-linkage hierarchical clustering

This dissertation will focus on the analysis of hierarchical clustering methods. Of particular

interest will be the single-linkage hierarchical clustering, defined as follows. Let X be a finite

collection of objects, and let ω : X × X → R be a symmetric function. We will interpret

ω as a measure of either the similarity or the dissimilarity between objects in X . If ω is a

dissimilarity, we define the dissimilarity graph as follows:

Definition 1.3 (Dissimilarity graph). The dissimilarity graph of (X , ω) is a function H,

defined on the reals, such that for any λ ∈ R, H(λ) is the graph on X in which the edge

(x, y) occurs if and only if ω(x, y) ≤ λ.

The definition of the similarity graph is symmetric; an edge (x, y) occurs if and only if

ω(x, y) ≥ λ. The single-linkage clustering is naturally defined in terms of these graphs:

Definition 1.4 (Single-linkage clustering). Let H be a dissimilarity (or similarity) graph

of (X , ω). The single-linkage clusters at level λ are the connected components of H(λ). The

single-linkage clustering C is the collection of all clusters from any level, i.e.:

C = {C ∈ 2X : C is a connected component of H(λ) for some λ ∈ R}.

The single-linkage hierarchical clustering is efficiently computable. A common approach

is to build the clustering agglomeratively using Kruskal’s algorithm for minimum spanning

trees. If a disjoint set forest data structure is used in the implementation, this approach

yields a time complexity of O(n2 log n), where n is the number of data points (Cormen

et al., 2001). Quadratic time complexity is attainable using faster methods for computing

minimum spanning trees, such as Prim’s algorithm with Fibonacci heaps, or the optimal

SLINK method of Sibson (1973).
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1.2 Objective minimization and k-means

We now turn to the problem of rigorously defining the goal of the clustering procedure. In

the objective minimization approach, a cost function is defined over the space of valid clus-

terings, such that the mission of the clustering algorithm is to return the optimal clustering

– or at least a clustering with low cost.

Perhaps the most familiar scheme within this family is k-means. Let (X , d) be a finite

metric space embedded within a larger (not necessarily finite) metric space (X ′, d), such

that X ⊂ X ′. Suppose that C is a flat clustering of X into k clusters. Given a cluster

C ∈ C, its centroid µ(C) is defined to be:

µ(C) = argmin
x′∈X ′

∑
x∈C

d(x, x′)2.

That is, the centroid of a cluster C is the point in the ambient metric space which minimizes

the sum of squared distances to points in C. The k-means cost of the clustering C is then:

ψk-means(C) =
∑
C∈C

∑
x∈C

d(x, µ(C))2.

The k-means objective function has special significance in the task of vector quantization,

where the goal is to find a codebook of k vectors which summarize the full set of vectors

X . A codebook which minimizes the k-means objective is optimal in the sense that it

minimizes the sum of squared errors between vectors in X and their closest representative

in the codebook.

In practice, finding the global minimum of the k-means objective function is typically

not feasible. In the familiar Euclidean setting, the problem is known to be NP-hard even

when k = 2 (Dasgupta and Freund, 2009) and, in general, NP-hard to approximate to

within a constant factor (Awasthi et al., 2015). Therefore, an approximation algorithm is

typically used in practice, the most famous being Lloyd’s iterative algorithm (Lloyd, 1982).
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Given a set of points X in m-dimensional Euclidean space and a parameter k corre-

sponding to the number of clusters, Lloyd’s algorithm begins by arbitrarily selecting initial

centroids µ1, . . . , µk. Next, each point x ∈ X is associated with its closest centroid accord-

ing to the Euclidean distance. The location of each centroid is updated by averaging all of

the points in X which correspond to it. This process of assigning points to centroids and

updating the centroid locations is continued until convergence.

While Lloyd’s algorithm is quite popular in practice, the theory surrounding it is bleak.

It may converge to something other than a local minimum of the k-means objective function,

and there is no known useful upper bound on the approximation error (Shalev-Shwartz and

Ben-David, 2014). Even the number of iterations until convergence is not well-bounded,

as Vattani (2011) shows that there exist data configurations for which the running time is

exponential in the number of points.

More broadly, it is debatable whether minimization of the k-means objective function

is an appropriate goal in clustering settings outside of vector quantization. Consider, for

instance, a set of points X sampled from a density f supported on Euclidean space. A

natural goal of clustering in this setting is to recover some finite summary of the underlying

density. But it is unclear how the clusters of the k-means-optimal clustering recover the

structure of the density f .

There are many other objective minimization approaches to clustering apart from k-

means, including the related k-median cost for vector clustering, and the RatioCut cost for

graph clustering whose relaxation leads to spectral clustering with the graph Laplacian (von

Luxburg, 2007). A notable recent addition to this family is a cost function for hierarchical

clustering, introduced by Dasgupta (2015). It can be shown that this objective function

assigns intuitively-reasonable costs in several canonical clustering tasks. While minimizing

the objective is NP-hard, Charikar and Chatziafratis (2017) show that it is efficient to

approximate.
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1.3 Axiomatic approaches

An alternative approach to formalizing the goal of clustering is to identify axioms which

describe the desirable behavior of a clustering method. Having made the axioms rigorous,

we ask what sort of methods exist which satisfy them. In this section, we review axiomatic

approaches to analyzing both flat and hierarchical clustering.

1.3.1 Kleinberg’s impossibility results

Kleinberg (2003) formalizes three natural properties which any flat clustering method should

have: scale-invariance, richness, and consistency. More precisely, let f be a clustering

algorithm which takes as input a finite metric space (X , dX ) and outputs a flat clustering

C of X . That is, f(X , dX ) = C. Kleinberg’s three axioms are as follows:

1. Scale-invariance: Scaling the finite metric space shouldn’t alter the clustering. That

is, if d′X is defined such that d′X (x, x′) = α · dX (x, x′) for any α > 0 and x, x′ ∈ X ,

then f(X , d′X ) = f(X , dX ).

2. Richness: We should be able to recover any particular clustering with an appropriate

choice of metric. Concretely, fix some partition C of X . There must exist a metric dX

on X such that f(X , dX ) = C.

3. Consistency: Shrinking clusters and moving them apart should not change the cluster-

ing. To be precise, suppose we apply our clustering algorithm to (X , dX ) and obtain

C, that is: f(X , dX ) = C. Now let d′X be any metric such that, for all x, x′ ∈ X ,

(a) if x and x′ are in the same block of C, then d′X (x, x
′) ≤ dX (x, x′),

(b) if x and x′ are in different blocks of C, then d′X (x, x
′) ≥ dX (x, x′).

Then f(X , dX ) = f(X , d′X ).

Each of these properties is natural, and we might require that any reasonable clustering

algorithm have them. Kleinberg’s (surprising) result, however, is that no algorithm can
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exist which satisfies all three axioms simultaneously. Kleinberg proceeds to show that for

any pair of axioms an algorithm exists which satisfies both (but not the third). Interestingly,

any center-based clustering method such as k-means does not satisfy consistency.

Shalev-Shwartz and Ben-David (2014) argue that Kleinberg’s impossibility result should

be interpreted as a no-free-lunch theorem for clustering; i.e., there is no single flat clustering

method which produces the “correct” clustering of all data sets. Rather, the correctness of

a clustering algorithm is limited to a particular application. On the other hand, Ben-David

and Ackerman (2009) argue that it is measures of the quality of a clustering that should

be axiomatized, rather than the clustering methods themselves. In this view, Kleinberg’s

negative result is a consequence of his formalism, and reformulating his axioms in the

framework of clustering quality measures does not necessarily lead to impossibility.

1.3.2 Characterization of single-linkage

While Kleinberg (2003) achieves an impossibility result in his study of flat clustering, Carls-

son and Mémoli (2010) analyze hierarchical clustering and find uniqueness. In particular,

the authors examine so-called ultrametric clustering methods. Recall that a finite metric

space is a pair (X , d), where X is a finite collection of objects and d : X × X → [0,∞) is a

metric satisfying the metric properties for all x, y, z ∈ X :

1. d(x, y) = d(y, x);

2. d(x, y) = 0⇔ x = y; and

3. d(x, y) ≤ d(x, z) + d(z, y).

A metric space (X , u) is a finite ultrametric space if, in addition, for all x, y, z ∈ X ,

max{u(x, y), u(x, z)} ≥ u(x, z). This inequality is known as the strong triangle inequal-

ity or the ultrametric inequality. A consequence of this inequality is that all triangles are

isosceles in an ultrametric space.
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Carlsson and Mémoli (2010) analyze methods which take a finite metric space (X , d)

to a finite ultrametric space (X , u). The natural hierarchical clustering associated with a

finite ultrametric space (X , u) is most easily written in terms of the equivalence relation ∼λ,

defined as x ∼λ y ⇔ u(x, y) ≤ λ. The equivalence classes of ∼λ are called the clusters at

level λ. The set of all equivalence classes for all levels λ ∈ [0,∞) is a hierarchical clustering

of X as we have formalized in Definition 1.2. Therefore, any map from a metric space (X , d)

to an ultrametric space (X , u) induces a hierarchical clustering on X .

A natural and well known ultrametric map is the one induced by the single-linkage

clustering described in Definition 1.3 and Definition 1.4 above. Given a finite metric space

(X , d), let H be the corresponding dissimilarity graph; i.e., H is the function mapping

a scalar λ to the graph which contains the edge (x, y) if and only if d(x, y) ≤ λ. The

single-linkage ultrametric uSL is defined by

uSL(x, y) = min{λ : x and y are connected in H(λ)}.

The single-linkage construction is only one possible map from a metric space to an ul-

trametric space; other commonly-used maps include average-linkage and complete-linkage.

Carlsson and Mémoli (2010) show, however, that single-linkage is the unique ultramet-

ric clustering method satisfying a set of natural axioms. In particular, suppose f is an

ultrametric clustering method such that:

1. f({x, y}, ( 0 δ
δ 0 )) = ({x, y}, ( 0 δ

δ 0 ) for any δ > 0;

2. whenever (X , dX ) and (Y, dY) are two finite metric spaces, and φ : X → Y such that

dX (x, x
′) ≥ dY(φ(x), φ(x

′)) for all x, x′ ∈ X , then uX (x, x
′) ≥ uY(φ(x), φ(x

′)) is true

for all x, x′ ∈ X , where f(X , dX ) = (X , uX ) and f(Y, dY) = (Y, uY); and

3. for any finite metric space (X , d), u(x, x′) ≥ miny ̸=y′ d(y, y
′) where f(X , d) = (X , u).

Then f : (X , d) 7→ (X , uSL); i.e., f is exactly single-linkage.

8



Like Kleinberg’s axioms, the above properties are quite natural, especially when u(x, y)

is intrepreted as the “effort” required to cluster x and y together. The first property ensures

that the effort required to bring two objects together in a finite metric space consisting of

only those two objects is exactly the distance between them. The last property enforces

our intuition that the effort required to bring any two objects together is at least as large

as the distance between the closest pair of points. The second axiom, called functoriality,

encodes our belief that shrinking the distance between a pair of points can only make them

easier to cluster together. Unlike Kleinberg’s axioms, however, the above three properties

do not lead to impossibility, but rather characterize the single-linkage algorithm.

Linkage-based ultrametric clustering methods are commonly used in the biological sci-

ences, where they fall under the name of “numerical taxonomy” (Sneath et al., 1962). It is

interesting to note that, despite its theoretical footing, single-linkage is generally disfavored

in comparison to the complete- and average-linkage methods. This is because single-linkage

exhibits the so-called “chaining” effect, in which distinct regions of high density are nev-

ertheless clustered together at low levels of the tree due to the presence of a thin, sparse

chain of closely-spaced points (Lance and Williams, 1967).

1.4 Model-based methods

The objective function and axiomatic approaches to the formalization of clustering are

typically agnostic as to the source of the data. In a third approach, we assume that the

data are generated by an underlying statistical model. In this view, the goal of clustering

is the recovery of the natural structure of the model from a finite sample. In particular, we

are concerned with consistent methods which converge to the underlying structure as the

size of the data grows.

The formulation of a model-based theory of statistically-consistent clustering has four

major components:
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Model: First, we model the process which generates the data.

Define clusters: Second, we rigorously define the cluster structure of the model. This is

the structure which we hope to recover through clustering.

Define consistency: Third, we adopt a precise notion of statistical consistency which

formalizes the sense in which the output of a clustering method can be said to converge

to the structure of the model as the size of the data set grows.

Prove existence: Finally, we demonstrate that consistent clustering algorithms exist.

For our theory to have practical relevance, our model of the data generating process must

adequately approximate the way in which real data are generated. This suggests the analysis

of rich statistical models. On the other hand, the complexity of a model typically increases

with its richness. Complex models are often hard to analyze, which presents an obstacle in

developing the remaining parts of the clustering theory. Many clustering consistency results

are situated in simpler models precisely because they are more tractable.

However, a statistical-based theory of clustering formulated in a sufficiently-rich model

has an advantage over the axiomatic and objective function theories: the meaning of an

individual data cluster is clearer. Clustering methods are often applied in the interest of data

exploration where the goal is to provide results which are interpretable by a human analyst.

The fact that a cluster appears in a clustering which minimizes an objective function is

perhaps not of much use in interpreting the results. On the other hand, the appearance

of a cluster in the output of a model-based method reveals some aspect of the underlying

distribution, which is often the aim of data analysis.

In this dissertation, we develop statistical theories of clustering in rather general, non-

parametric models. In particular, Chapter 2 studies the density setting, while Chapter 3

examines the clustering of graphs generated from a graphon – a powerful random graph

model of much recent interest in the statistics and mathematics literature. In each case, the

canonical cluster structure of the model will turn out to be hierarchical. We therefore study
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the sense in which hierarchical clustering algorithms converge to the infinite tree underlying

the distribution. We will see that, in both settings, single-linkage clustering as applied to

an appropriately-defined pre-processing of the data will yield a consistent algorithm.
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Chapter 2

The density model

In this chapter, we study clustering under the assumption that the data are samples from a

probability density. A natural goal of clustering in this setting is to recover “islands” of high

probability; that is, the output of a clustering algorithm should identify the distinct peaks

of the density landscape. Wishart (1969) and Hartigan (1975) made this notion precise by

defining the high-density clusters of a density f : X → R+ to be the connected components

of the level set {x ∈ X : f(x) ≥ λ} for some λ. The collection of all high density clusters of

f at any level λ has hierarchical structure, in the sense that clusters from higher levels nest

within clusters from lower levels. As a result, this collection is known as the density cluster

tree of f . In this view, the goal of clustering is to recover the density cluster tree from data.

We are interested in proving the correctness of clustering algorithms which are density

tree estimators. In particular, we will study the sense in which the output of a hierarchical

clustering algorithm converges to the infinite underlying density cluster tree as the size of

the data grows. In order to do so, we must adopt a formal notion of convergence. One

natural approach is to require that any two distinct high density clusters are separated by

the clustering algorithm given enough samples. This notion was introduced by Hartigan

(1981) and is known as Hartigan consistency. While Hartigan consistency is a desirable

property of any density tree estimator, it is well known that it does not fully capture the

properties of convergence that one would a priori expect. In particular, it does not exclude

clusterings which are very different in structure from the underlying probability distribution.

In this chapter, we identify two distinct undesirable clustering configurations permitted

by Hartigan consistency – over-segmentation (identified as the problem of false clusters by
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Chaudhuri et al., 2014) and improper nesting. We observe that both configurations result

from clusters merging at the wrong level. To ensure that clusters merge at the correct

level, we propose two basic limit properties sufficient for hierarchical cluster convergence:

minimality and separation. Together, these properties are strictly stronger than Hartigan

consistency and in fact rule out the aforementioned “improper” clusterings.

Furthermore, we introduce the merge distortion metric as a quantitative measure of the

distance between two cluster trees. We show that if a sequence of clusterings converges to

the density cluster tree of f in the sense of merge distortion, the sequence necessarily sat-

isfies the above properties of minimality and separation. Conversely, we show that slightly

stronger versions of minimality and separation imply convergence in merge distortion, and

are therefore equivalent to convergence.

Still, attempts to formulate some intuitively desirable properties of clustering have led to

well-known impossibility results, such as those proven by Kleinberg (2003). In order to show

that our definitions correspond to actual objects, and, furthermore, to realistic algorithms,

we analyze the robust single-linkage clustering proposed by Chaudhuri and Dasgupta (2010).

We prove convergence of that algorithm under our merge distortion metric and hence show

that it satisfies separation and minimality conditions.

2.1 Related work

The problem of devising an algorithm which provably converges to the true density cluster

tree in the sense of Hartigan has a long history. Hartigan (1981) proved that single linkage

clustering is not consistent in dimensions larger than one. Previous to this, Wishart (1969)

had introduced a more robust version of single linkage, but its consistency had not been

known. Stuetzle and Nugent (2010) introduced another generalization of single-linkage

designed to estimate the density cluster tree, but again consistency was not established.
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Recently, however, two distinct consistent algorithms have been introduced: The robust

single linkage algorithm of Chaudhuri and Dasgupta (2010), and the tree pruning method of

Kpotufe and Luxburg (2011). Both algorithms are analyzed together, along with a pruning

extension, in Chaudhuri et al. (2014). The robust single linkage algorithm was generalized

in Balakrishnan et al. (2013) to densities supported on a Riemannian submanifold of Rd.

We analyze the algorithm of Chaudhuri and Dasgupta (2010) in Section 2.6. Chaudhuri and

Dasgupta (2010) provide several theorems which make precise the sense in which clusters

are connected and separated at each step of the robust single linkage algorithm. This

work translates their results to our formalism, thereby proving that robust single linkage

converges to the density cluster tree in the merge distortion metric.

A central contribution of this chapter will be to introduce notions which extend Harti-

gan consistency and are desirable properties of any algorithm which estimates the density

cluster tree. In a related direction, Kleinberg (2003) outlined three desirable properties of

a clustering method, and proved that no method satisfying all three exists. Ben-David and

Ackerman (2009) argued that the impossibility result of Kleinberg is tied to his formalism,

and showed that axioms similar to his can be made consistent by axiomatizing cluster-

ing quality measures as opposed to clustering functions themselves. Zadeh and Ben-David

(2009) and Ackerman et al. (2010) presented axiomatic characterizations of linkage-based

clustering algorithms. Similarly, Carlsson and Mémoli (2010) introduced functoriality as

one of three axioms related to Kleinberg’s and showed that single linkage agglomerative

clustering is the only method which simultaneously satisfies each.

2.2 Preliminaries and definitions

Given a density f supported on X ⊂ Rd, a natural way to cluster X is into regions of high

density. Hartigan (1975) made this notion precise by defining a high-density cluster of f

to be a connected component of the superlevel set {f ≥ λ} := {x ∈ X : f(x) ≥ λ} for
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Figure 2.1: The high-density clusters of f at level λ.

any λ ≥ 0; see Figure 2.1 for a depiction of this definition. It is clear that high-density

clusters exhibit the nesting property: If C is a connected component of {f ≥ λ}, and C ′ is

a connected component of {f ≥ λ′}, then either C ⊆ C ′, C ′ ⊆ C, or C ∩ C ′ = ∅. We can

therefore interpret the set of all high-density clusters of a density f as a cluster tree:

Definition 2.1 (Density cluster tree of f). Let X ⊂ Rd and consider any f : X → R.

The density cluster tree of f , written Cf , is the cluster tree whose nodes (clusters) are the

connected components of {x ∈ X : f(x) ≥ λ} for some λ ≥ 0.

We note that the density cluster tree of f is closely related to the so-called split tree

studied in the computational geometry and topology literature as a variant of the contour

tree; see e.g, (Carr et al., 2003).

In practice we do not have access to the true density f , but rather a finite collection of

samples Xn ⊂ X drawn from f . We may attempt to recover the structure of the density

cluster tree Cf by applying a hierarchical clustering algorithm to the sample, producing a

discrete cluster tree Ĉf,n whose clusters are subsets of Xn. In order to discuss the sense in

which the discrete estimate Ĉf,n is consistent with the density cluster tree Cf in the limit

n→∞, Hartigan (1981) introduced a notion of convergence which has since been referred

to as Hartigan consistency. We follow Chaudhuri and Dasgupta (2010) in defining Hartigan

consistency in terms of the density cluster tree:

Definition 2.2 (Hartigan consistency). Suppose a sample Xn ⊂ X of size n is used to

construct a cluster tree Ĉf,n that is an estimate of Cf . For any sets A,A′ ⊂ X , let An
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Figure 2.2: The merge height of a pair of points.

(respectively A′
n) denote the smallest cluster of Ĉf,n containing A∩Xn (respectively, A′∩Xn).

We say Ĉf,n is consistent if, whenever A and A′ are different connected components of

{x ∈ X : f(x) ≥ λ} for some λ > 0, P(An is disjoint from A′
n)→ 1 as n→∞.

A major goal of this chapter is to develop notions of consistency which are stronger than

Hartigan’s. For this, it will be useful to talk about the “height” at which two points in a

clustering merge. To motivate our definition, consider the two points a and a′ which sit on

the surface of the density depicted in Figure 2.2. Intuitively, a sits at height f(a) on the

surface, while a′ sits at f(a′). If we look at the superlevel set {f ≥ f(a′)}, we see that a and

a′ lie in two different high-density clusters. As we sweep λ < f(a′), the disjoint components

of {f ≥ λ} containing a and a′ grow, until they merge at height µ. We therefore say that

the merge height of a and a′ is µ.

We may also interpret the situation depicted in Figure 2.2 in the language of the density

cluster tree. Let A be the connected component of {f ≥ f(a)} which contains a, and let A′

be the component of {f ≥ f(a′)} containing a′. Recognize that A and A′ are nodes in the

density cluster tree. As we walk the unique path from A to the root, we eventually come

across a node M which contains both a and a′. Note that M is a connected component of

the superlevel set {f ≥ µ}. It is desirable to assign a height to the entire cluster M , and a

natural choice is therefore µ.

We extend this intuition to cluster trees which may not, in general, be associated with

a density f by introducing the concept of a height function:
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Definition 2.3 (Cluster tree with height function). A cluster tree with a height function

is a triple C = (X, C, h), where X is a set of objects, C is a cluster tree of X, and h : X → R

is a height function mapping each point in X to a “height”. Furthermore, we define the

height of a cluster C ∈ C to be the lowest height of any point in the cluster. That is,

h(C) = infx∈C h(x). Note that the nesting property of C implies that if C ′ is a descendant

of C in the cluster tree, then h(C ′) ≥ h(C).

We will be consistent in using Cf to denote the density cluster tree of f equipped with

height function f . That is, Cf = (X , Cf , f). Armed with these definitions, we may precisely

discuss the sense in which points – and, by extension, clusters – are connected at some level

of a tree:

Definition 2.4. Let C = (X, C, h) be a hierarchical clustering of X equipped with height

function h.

1. Let x, x′ ∈ X. We say that x and x′ are connected at level λ if there exists a C ∈ C

with x, x ∈ C such that h(C) ≥ λ. Otherwise, x and x′ are separated at level λ.

2. A subset S ⊂ X is connected at level λ if for any s, s′ ∈ S, s and s′ are connected at

level λ.

3. Let S ⊂ X and S′ ⊂ X. We say that S and S′ are separated at level λ if for any

s ∈ S, s′ ∈ S′, s and s′ are separated at level λ.

We can now formalize the notion of merge height:

Definition 2.5 (Merge height). Let C = (X, C, h) be a hierarchical clustering equipped

with a height function. Let x, x′ ∈ X, and suppose that M is the smallest cluster of C

containing both x and x′. That is, if M ′ ∈ C is a proper sub-cluster of M , then x ̸∈ M ′ or

x′ ̸∈M ′. We define the merge height of x and x′ in C, written mC(x, x
′), to be the height of

the cluster M in which the two points merge, i.e., mC(x, x
′) = h(M). If S ⊂ X, we define

the merge height of S to be the inf(s,s′)∈S×SmC(s, s
′).
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correct incorrect

Figure 2.3: Undesirable clusterings permitted by Hartigan consistency.

In what follows, we argue that a natural and advantageous definition of convergence to

the true density cluster tree is one which requires that, for any two points x, x′, the merge

height of x and x′ in an estimate, mĈf,n
(x, x′), approaches the true merge height mCf

(x, x′)

in the limit n→∞.

2.3 The weakness of Hartigan consistency

In this section we demonstrate that while Hartigan consistency is a desirable property, it

is not sufficient to guarantee that an estimate captures the true cluster tree in a sense that

matches our intuition. That is, an algorithm which is Hartigan consistent can nevertheless

produce results which are quite different than the true cluster tree. Figure 2.3 illustrates

the issue. Figure 2.3(a) depicts a two-peaked density f from which the finite sample Xn

is drawn. The two disjoint clusters A and B are also shown. The two trees to the right

represent possible outputs of clustering algorithms attempting to recover the hierarchical

structure of f . Figure 2.3(b) depicts what we would intuitively consider to be an ideal

clustering of Xn, whereas Figure 2.3(c) shows an undesirable clustering which does not

match our intuition behind the density cluster tree of f .

First, note that while the two clusterings are very different, both satisfy Hartigan con-

sistency. Hartigan’s notion requires only separation: The smallest empirical cluster con-
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taining A ∩Xn must be disjoint from the smallest empirical cluster containing B ∩Xn in

the limit. The smallest empirical cluster containing A∩Xn in the undesirable clustering is

An := {x2, a1, a2, a3}, whereas the smallest containing B ∩Xn is Bn := {x1, b1, b2, b3}. An

and Bn are clearly disjoint, and so Hartigan consistency is not violated. In fact, the unde-

sirable tree separates any pair of disjoint clusters of f , and therefore represents a possible

output of an algorithm which is Hartigan consistent despite being quite different from the

true tree.

We will show that the undesirable configurations of Figure 2.3(c) arise because Harti-

gan consistency does not place strong demands on the level at which a cluster should be

connected. Consider a cluster A occurring at level λ of the true density, and let An be the

smallest empirical cluster containing all of A ∩Xn. In the ideal case, an algorithm would

perfectly recover A such that An = A ∩ Xn. It is much more likely, however, that An

contains “extra” points from outside of A. Hartigan consistency places one constraint on

the nature of these extra points: They may not belong to some other disjoint cluster of f .

However, Hartigan’s notion allows An to contain points from clusters which are not disjoint

from A. By their nature, these points must be of density less than λ. If An contains such

extra points, then A ∩ Xn is separated at level λ, and in fact only becomes connected at

level mina∈An f(a) < δ. Therefore, permitting A∩Xn to become connected at a level lower

than λ is equivalent to allowing “extra” points of density < λ to be contained within An.

The undesirable configurations depicted in Figure 2.3(c) can be divided into two distinct

categories, which we term over-segmentation and improper nesting. Either of these issues

may exist independently of the other, and both are symptoms of allowing clusters to become

connected at lower levels than what is appropriate.

2.3.1 Over-segmentation

Over-segmentation occurs when an algorithm fragments a true cluster, returning empiri-

cal clusters which are disjoint at level λ but are in actuality part of the same connected
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component of {f ≥ λ}. The problem is recognized in the literature by Chaudhuri et al.

(2014), who refer to it as the presence of false clusters. Figure 2.3(c) demonstrates over-

segmentation by including the clusters An := {x2, a1, a2, a3} and Bn := {x1, b1, b2, b3}. An

and Bn are disjoint at level f(x1), though both are in actuality contained within the same

connected component of {f ≥ f(x1)}.

It is clear that over-segmentation is a direct result of clusters connecting at the incorrect

level. The severity of the issue is determined by the difference between the levels at which

the cluster connects in the density cluster tree and the estimate. That is, if A is connected

at λ in the density cluster tree, but A ∩ Xn is only connected at λ − δ in the empirical

clustering, then the larger δ the greater the extent to which A is over-segmented.

2.3.2 Improper nesting

Improper nesting occurs when an empirical cluster Cn is the smallest cluster containing a

point x, and f(x) > minc∈Cn f(c). The clustering in Figure 2.3(c) displays two instances of

improper nesting. First, the left branch of the cluster tree has improperly nested the cluster

{a1, a2}, as it is the smallest cluster containing a2, yet f(a1) < f(a2). The right branch of

the same tree has also been improperly nested in a decidedly “lazier” fashion: the cluster

{x1, b1, b2, b3} is the smallest empirical cluster containing each of b1, b2, and b3, despite each

being of density greater than f(x1). Improper nesting is considered undesirable because it

breaks the intuition we have about the containment of clusters in the density cluster tree;

Namely, if A ⊂ A′ and a ∈ A, a′ ∈ A′, then f(a) ≥ f(a′).

Note that like over-segmentation, improper nesting is caused by a cluster becoming

connected at a lower level than is appropriate. For instance, suppose Cn is improperly

nested; That is, it is the smallest empirical cluster containing some point x such that

f(x) > minc∈Cn f(c). Let C̃ be the connected component of {f ≥ f(x)} which contains x,

and let C̃n be the smallest empirical cluster containing all of C̃ ∩Xn. Then Cn ⊂ C̃n such

that minc∈C̃n
f(c) < f(x). In other words, C̃ ∩Xn is connected only below f(x).
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2.4 Stronger properties for consistency

We have seen that Hartigan consistency does not ensure that a clustering captures the shape

of the underlying density as one would intuitively expect. In particular, we have identified

two senses – over-segmentation and improper nesting – in which a hierarchical clustering

method can produce results which are inconsistent with the density cluster tree, but which

are not prevented by Hartigan consistency. We have shown that both are symptoms of

clusters becoming connected at the wrong level. In this section, we introduce two new limit

properties, termed minimality and separation, which ensure that clusters indeed merge at

the correct level in the empirical cluster tree.

2.4.1 Minimality

As previously mentioned, it is not reasonable to demand that a cluster A of the density f

be perfectly recovered by a clustering algorithm. Rather, if A is connected at level λ in the

density cluster tree, we should allow A ∩ Xn to be first connected at a level λ − δ in the

estimate, for some small positive δ. We now introduce the notion of δ-minimality in order

to measure the sense in which A is connected at the correct level in an empirical cluster

tree.

In the following, let Cf be the ideal cluster tree of the density f . Let X be a finite subset

of the support of f , and let Ĉf be a hierarchical clustering of X. Denote by Ĉf the cluster

tree Ĉf equipped with f as height function.

Definition 2.6 (δ-minimal). Let A be a connected component of {x ∈ X : f(x) ≥ λ}. A

is δ-minimal in Ĉf if A ∩X is connected at level λ− δ in Ĉf,n.

Intuitively, if an empirical cluster tree truly resembles the ideal cluster tree of f , then

each cluster of f should be δ-minimal in the empirical tree for some small δ. For example,

consider again the situation depicted in Figure 2.3 on page 18. It is easy to see that

every cluster of the density f is 0-minimal in the ideal clustering shown in Figure 2.3(b).
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Figure 2.4: Minimality.

Indeed, the δ-minimality of a cluster C quantifies the extent to which it possibly exhibits

over-segmentation or improper nesting.

Our notion of δ-minimality applies to a fixed cluster of f and a single instance of a

cluster tree estimate, Ĉf,n. We now formally state the corresponding limit property for a

sequence of estimated cluster trees {Ĉf,n} and a sequence of random data sets {Xn}, each

indexed by n. We call this notion minimality.

Definition 2.7 (Minimality). We say that Ĉf,n ensures minimality if given any connected

component A of the superlevel set {x ∈ X : f(x) ≥ λ} for some λ > 0,

P
(
A ∩Xn is connected at level λ− δ in Ĉf,n

)
→ 1

for any δ > 0 as n→∞.

Figure 2.4 depicts minimality. The ideal cluster C is connected at level λ in the density

cluster tree, but at some level λ−δ in the empirical cluster tree. This is an instance of over-

segmentation. Minimality ensures that δ → 0 as n→∞, thereby limiting the magnitude of

the over-segmentation.
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Figure 2.5: Separation.

2.4.2 Separation

Minimality concerns the level at which a cluster is connected – it says nothing about the

ability of an algorithm to distinguish pairs of disjoint clusters. For this, we must complement

minimality with an additional notion of consistency which ensures separation. Hartigan

consistency is sufficient, but does not explicitly address the level at which two clusters are

separated. We will therefore introduce a slightly different notion, which we term separation:

Definition 2.8 (Separation). We say that Ĉf,n ensures separation if when A and B are

two disjoint connected components of {x ∈ X : f(x) ≥ λ} merging at µ = mCf
(A ∪B),

P
(
A ∩Xn and B ∩Xn are separated at level µ+ δ in Ĉf,n

)
→ 1

for any δ > 0 as n→∞.

It is interesting to note that Hartigan consistency contains some weak notion of con-

nectedness, as it requires the two sets A ∩ Xn and B ∩ Xn to be connected into clusters

An and Bn at the same level at which they are separated. Our notion only requires that

A ∩Xn and B ∩Xn be disjoint at this level. We “factor out” Hartigan consistency’s idea

of connectedness, leaving separation, and replace it with a stronger notion of minimality.

Figure 2.5 depicts separation. The ideal clusters merge at level µ in the density, but

at a higher level µ + δ in the empirical cluster tree. In this case, the clustering algorithm
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has merged clusters too aggressively. Separation requires that as n → ∞, δ → 0, thereby

ensuring that the clustering is not over-connected.

2.4.3 Proof of strength

Together, minimality and separation imply Hartigan consistency.

Theorem 2.1 (Minimality and separation =⇒ Hartigan consistency). If a hierarchical

clustering method ensures both separation and minimality, then it is Hartigan consistent.

Proof. Let A and A′ be disjoint connected components of the superlevel set {x ∈ X : f(x) ≥

λ} merging at level µ. Pick any λ − µ > δ > 0. Let E1 be the event that A ∩ Xn and

A′ ∩Xn are separated in Ĉf,n at level µ+ δ, let E2 be the event that A ∩Xn is connected

at level µ+ δ, and let E3 be the event that A′ ∩Xn is connected at level µ+ δ.

Suppose all three events hold. Let An be the smallest cluster containing all of A ∩Xn,

and A′
n be the smallest cluster containing all of A′ ∩Xn. Suppose for a contradiction that

there is some x ∈ Xn such that x ∈ An ∩ A′
n. Then either An ⊂ A′

n or A′
n ⊂ An. Without

loss of generality, assume An ⊂ A′
n.

By the assumption that event E3 holds, A∩Xn is connected at level µ+ δ. Since A′
n is

the smallest empirical cluster containing all of A ∩Xn, it follows that h(A′
n) ≥ µ+ δ. This

means that there exists a cluster at or above level µ+δ containing all of A∩Xn and A′∩Xn;

namely A′
n. This contradicts the assumption that A ∩ Xn and A′ ∩ Xn are separated at

level µ+ δ. Hence An ∩A′
n = ∅.

In other words, if events E1, E2, and E3 hold, then An and A′
n are disjoint. It follows

from minimality and separation that P(E1 ∧E2 ∧E3)→ 1 as n→∞. Hence P(An ∩A′
n =

∅)→ 1 as n→∞; i.e., the method is Hartigan consistent. ■
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2.4.4 Uniform minimality and separation

Minimality and separation have been defined as properties which are true for all clusters in

the limit. In addition, we may define stronger versions of these concepts which require that

all clusters approach minimality and separation simultaneously:

Definition 2.9 (Uniform minimality). Fix some δ > 0, and let Eδ be the event that for all

clusters A of f simultaneously, A ∩ Xn is connected in Ĉf,n at level mCf
(A) − δ. We say

that Ĉf,n ensures uniform minimality if P(Eδ)→ 1 as n→∞ for any δ > 0.

Definition 2.10 (Uniform separation). Fix some δ > 0, and let Eδ be the event that for

all disjoint clusters A,A′ of f simultaneously, A ∩Xn and A′ ∩Xn are separated in Ĉf,n at

level mCf
(A∩A′)+ δ. We say that Ĉf,n ensures uniform separation if P(Eδ)→ 1 as n→∞

for any δ > 0.

The uniform versions of minimality and separation are equivalent to the weaker versions

under some assumptions on the density, as the following lemma shows:

Lemma 2.1. Let f be a density supported on X , and let {Ĉf,n} be a sequence of cluster

trees computed from finite samples Xn ⊂ X . Suppose f ≤M for some M ∈ R, and that for

any λ, {x ∈ X : f(x) ≥ λ} contains finitely many connected components. Then

1. If {Ĉf,n} ensures minimality for f , it ensures uniform minimality.

2. If {Ĉf,n} ensures separation for f , it ensures uniform separation.

Proof. We will prove the first case, in which Ĉf,n ensures minimality. The proof of uniform

separation follows closely, and is therefore omitted.

Pick δ > 0. Let Cf (λ) denote the (finite) set of connected components of {x ∈ X :

f(x) ≥ λ}. Consider the collection of connected components of superlevel sets spaced δ/2

apart:

D =

⌊2M/δ⌋∪
n=0

Cf (nδ/2)
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The fact that Ĉf,n ensures minimality implies that for each C ∈ D there exists an N(C)

such that for all n ≥ N(C), C∩Xn is connected at level h(C)−δ/2. Let N = maxC∈DN(C).

This is well-defined, as D is a finite set.

Let A be a connected component of {x ∈ X : f(x) ≥ λ} for an arbitrary λ. Let

λ′ = ⌊2λ/δ⌋ δ2 , i.e., λ′ is the largest multiple of δ/2 such that λ′ ≤ λ. Then A is a subset

of some connected component A′ of {x ∈ X : f(x) ≥ λ′}. Note that A′ ∈ D, so that

A′ ∩Xn is connected at level λ′ − δ/2. Therefore A ∩Xn is connected at level λ′ − δ/2 >

(λ − δ/2) − δ/2 = λ − δ. Since A was arbitrary, and the choice of N depended only upon

δ, it follows that Ĉf,n ensures uniform minimality. ■

2.5 The merge distortion

The previous section introduced the notions of minimality and separation, which are desir-

able properties for a hierarchical clustering algorithm estimating the density cluster tree.

Like Hartigan consistency, minimality and separation are limit properties, and do not di-

rectly quantify the disparity between the true density cluster tree and an estimate. We

now introduce the merge distortion between cluster trees (equipped with height functions)

which will allow us to do just that. A key property of our definitions is that, under mild

conditions, convergence in merge distortion is equivalent to minimality and separation.

2.5.1 Motivation

Our concept of merge distortion is motivated by the existing literature surrounding den-

drogram clustering. A dendrogram is a hierarchical clustering induced by a scale function.

More formally, let X = {x1, x2, . . . , xn} be a collection of objects. We follow Carlsson

and Mémoli (2010) in defining a dendrogram to be a pair (X , θ) where the scale function

θ : [0,∞)→ 2X maps each scale t to a partition of X such that:

1. at scale zero, each object is in its own singleton cluster, i.e., θ(0) = {{x1}, {x2}, . . . , {xn}};
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2. at large enough scales, there is only one cluster, and it contains all object, i.e., there

exists a t0 such that θ(t) = {X} for all t ≥ t0;

3. if s ≤ t, then θ(s) is a refinement of the partition θ(t).1

We think of the partition θ(t) as being the set of clusters at scale t.

A dendrogram D = (X , θ) is naturally associated with a function uD which captures

the first scale at which objects are clustered together. In particular, for any pair of objects

x, x′, let uD(x, x′) = min{t ≥ 0 : x, x′ are in the same cluster of θ(t)}. As defined, uD is

a metric on the set of objects X . More precisely, the pair (X , uD) is a finite ultrametric

space2. It is well-known that the set of dendrograms on X and the set of ultrametric spaces

on X are in bijection, and so we may use a dendrogram D or its associated ultrametric uD

interchangeably.

It was observed by Carlsson and Mémoli (2010) that this ultrametric representation

suggests a particularly convenient distance on the space of dendrograms. This distance

makes use of ideas from metric geometry. First, recall the definition of a correspondence:

Definition 2.11. A correspondence γ between sets S and S′ is a subset of S×S′ such that

for ∀s ∈ S, ∃s′ ∈ S′ such that (s, s′) ∈ γ, and ∀s′ ∈ S′,∃s ∈ S such that (s, s′) ∈ γ.

Next, recall the definition of the metric distortion:

Definition 2.12. Let (X, dX) and (Y, dY ) be metric spaces, and let γ be a correspondence

between X and Y . The distortion with respect to γ, written ∆γ((X, dX), (Y, dY )) is given

by

∆γ((X, dX), (Y, dY )) = sup
(x,y),(x′,y′)∈γ

|dX(x, x′)− dY (y, y′)|.

Optimizing over the choice of correspondence leads to the Gromov-Hausdorff distance

between metric spaces (Burago et al., 2001). Carlsson and Mémoli (2010) recognize that
1Carlsson and Mémoli (2010) add a further technical condition: for all s there exists ϵ > 0 such that

θ(s) = θ(t) for all t ∈ [s, s+ ϵ].
2Recall that a finite metric space (X , d) is an ultrametric space if it is a metric space and d satisfies the

strong triangle inequality: for any x, y, z ∈ X , d(x, y) ≤ min{d(x, z), d(y, z)}.
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the metric distortion and Gromov-Hausdorff distance between ultrametric spaces provides

a means for measuring the difference between dendrograms. They use this notion to study

the stability and convergence of dendrogram clustering algorithms; in particular, they show

that single-linkage clustering converges in Gromov-Hausdorff to the hierarchical structure

of the support of the underlying density.

2.5.2 Definition

In this paper, we are interested in quantifying the distance between the density cluster

tree and a finite estimate output by a clustering algorithm. The estimate, however, is not

assumed to be a dendrogram, and so it has no natural ultrametric associated with it; As a

result, we cannot directly apply the notion of metric distortion described above.

We will instead use the fact that the points in the finite clustering are naturally asso-

ciated with a height – namely, a point x is associated with the value of the density at x,

i.e., f(x). By equipping the output of the clustering algorithm with this height, we can

use the concept of the merge height as given in Definition 2.5 in place of the ultrametric in

computing the distortion between clusterings. In particular, let C = (X , C, h) be a cluster

tree equipped with height function h. Let x, x′ be any pair of points in X , and let Cx,x′ be

the smallest cluster in C which contains them. Recall that the merge height of x, x′, written

mC(x, x
′), is defined to be mins∈Cx,x′ h(s). Alternatively, we have:

mC(x, x
′) = max

C∈C
x,x′∈C

{
min
s∈C

h(s)

}
.

We note that this is not the only way to define the merge height on a cluster tree equipped

with a height function, but it is particularly natural and will in fact be instrumental in

the equivalence between minimality and separation and the notion of consistency we will

develop below.
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We now define the merge distortion. Let C1 = (X1, C1, h1) and C2 = (X2, C2, h2) be

two cluster trees equipped with height functions. Let mC1 and mC2 be their respective

merge height functions. We define the merge distortion between C1 and C2 in terms of the

distortion between merge heights. In general, C1 and C2 cluster different sets of objects, so

we will use the distortion with respect to a correspondence between these sets:

Definition 2.13 (Merge distortion). Let C1 = (X1, C1, h1) and C2 = (X2, C2, h2) be two

hierarchical clusterings equipped with height functions. Let S1 ⊂ X1 and S2 ⊂ X2. Let

γ ⊂ S1×S2 be a correspondence between S1 and S2. The merge distortion between C1 and

C2 with respect to γ is defined as

dγ(C1,C2) = sup
(x1,x2),(x′

1,x
′
2)∈γ
|mC1(x1, x

′
1)−mC2(x2, x

′
2)|.

We note that the novelty in our definition of the merge distortion is in the particular

choice of merge height functions.

We now use the merge distortion in defining the sense in which a sequence of finite esti-

mates converges to the density cluster tree Cf = (X , Cf , f). Suppose we run a hierarchical

clustering algorithm on a sample Xn ⊂ X of size n drawn from f , obtaining a cluster tree

Ĉf,n. Denote by Ĉf,n = (Xn, Ĉf,n, f) the cluster tree equipped with height function f . The

natural correspondence is induced by identity in Xn: That is, γ̂n = {(x, x) : x ∈ Xn}.

We then define our notion of convergence to the density cluster tree with respect to this

correspondence:

Definition 2.14 (Convergence to the density cluster tree). We say that a sequence of

cluster trees {Ĉf,n} converges to the high density cluster tree Cf of f , written Ĉf,n → Cf ,

if for any ε > 0 there exists an N such that for all n ≥ N , dγ̂n(Ĉf,n,Cf ) < ε.

Convergence in merge distortion is depicted in Figure 2.6. As shown, the empirical

cluster tree exhibits over-segmentation. As a consequence, the points a and b merge at

a height m̂(a, b) well below their correct merge height of m(a, b). Convergence in merge
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Figure 2.6: Convergence in merge distortion ensures that m̂(a, b)→ m(a, b).

distortion ensures that m̂(a, b) → m(a, b) for all pairs of data points, thereby limiting the

over-segmentation which can occur.

2.5.3 Properties

We now prove various useful properties of the merge distortion. First, we show that con-

vergence in merge distortion to the density cluster tree is equivalent to the combination

of uniform minimality and uniform separation. We then discuss stability properties of the

distortion.

Equivalence with minimality and separation.

Intuitively, our property of minimality ensures that the empirical merge height m̂(a, b)

converges to the true merge height from below. Similarly, separation ensures that the

empirical merge height converges to the true merge height from above. The uniform versions

of these properties together imply convergence to the density cluster tree in merge distortion.

Theorem 2.2. If Ĉf,n ensures uniform separation and uniform minimality, then Ĉf,n → Cf .

Proof. Take any δ > 0. Uniform separation and minimality imply that there exists an N

such that for all λ any cluster A ∈ {x ∈ X : f(x) ≥ λ} is connected at level λ − δ, and

for all µ any two disjoint clusters B,B′ merging at µ are separated at level µ+ δ. Assume
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n ≥ N , and consider any x, x′ ∈ Xn. W.L.O.G., assume f(x′) ≥ f(x). We will show that

|mĈf,n
(x, x′)−mCf

(x, x′)| ≤ δ.

Let A be the connected component of {f ≥ f(x)} containing x, and let A′ be the

connected component of {f ≥ f(x′)} containing x′. There are two cases: either A′ ⊆ A, or

A ∩A′ = ∅.

Case I: A′ ⊆ A. Then mCf
(x, x′) = f(x). Minimality implies that A ∩ Xn is con-

nected at level f(x)− δ, and therefore mĈf,n
(x, x′) ≥ f(x)− δ. On the other hand, clearly

mĈf,n
(x, x′) ≤ f(x). Hence |mĈf,n

(x, x′)−mCf
(x, x′)| ≤ δ.

Case II: A∩A′ = ∅. Let µ := mCf
(x, x′) be the merge height of x and x′ in the density

cluster tree of f , and suppose that M is the connected component of {f ≥ µ} containing

x and x′. Then separation implies that x and x′ are separated at level µ + δ, such that

mĈf,n
(x, x′) < µ + δ. On the other hand, minimality implies that M ∩Xn is connected at

level µ− δ, so that mĈf,n
(x, x′) ≥ µ− δ. Therefore |mĈf,n

(x, x′)−mCf
(x, x′)| ≤ δ. ■

We now show that the converse is also true, and so convergence in merge distortion is

equivalent to the combination of uniform separation and uniform minimality.

Theorem 2.3. Ĉf,n → Cf implies 1) uniform minimality and 2) uniform separation.

Proof. Our proof consists of two parts.

Part I: Ĉf,n → Cf implies uniform minimality. Pick any δ > 0 and let n be large enough

that d(Cf , Ĉf,n) < δ. Let A be a connected component of {x ∈ X : f(x) ≥ λ} for arbitrary

λ. Let a, a′ ∈ A ∩ Xn. Then mĈf,n
(a, a′) > mCf

(a, a′) − δ. But a and a′ are elements of

A, such that mCf
(a, a′) ≥ λ. Hence mĈf,n

(a, a′) > λ − δ. Since a and a′ were arbitrary, it

follows that A ∩Xn is connected at level λ− δ.

Part II: Ĉf,n → Cf implies uniform separation. Pick any δ > 0 and let n be large enough

that d(Cf , Ĉf,n) < δ. Let A and A′ be disjoint connected components of {x ∈ X : f(x) ≥ λ}

for arbitrary λ. Let µ := mCf
(A∪A′) be the merge height of A and A′ in the density cluster

tree. Take any a ∈ A ∩Xn and a′ ∈ A′ ∩Xn. Then mĈf,n
(a, a′) < mCf

(a, a′) + δ = µ + δ.
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Therefore a and a′ are separated at level µ + δ. Since a and a′ were arbitrary, it follows

that A ∩Xn and A′ ∩Xn are separated at level µ+ δ. ■

Stability.

An important property to study for a distance measure is its stability; namely, to quantify

how much the cluster tree varies as its input is perturbed. We provide two such results.

The first result says that the density cluster tree induced by a density function is stable

under the merge distortion with respect to L∞-perturbation of the density function.

Theorem 2.4 (L∞-stability of true cluster tree). Given a density function f : X → R

supported on X ⊂ Rd, and a perturbation f̃ : X → R of f , let Cf and Cf̃ be the resulting

density cluster trees as defined in Definition 2.1, and let Cf := (X , Cf , f) and Cf̃ :=

(X , Cf̃ , f̃) denote the cluster trees equipped with height functions. We have dγ(Cf ,Cf̃ ) ≤

∥f − f̃∥∞, where γ ⊂ X ×X is the natural correspondence induced by identity γ = {(x, x) |

x ∈ X}.

Proof. Set δ = ∥f − f̃∥∞. Let x, x′ be two arbitrary points from X. We need to show that

|mCf
(x, x′) − mCf̃

(x, x′)| ≤ 4δ, which will then implies the theorem. In what follows, we

prove that mCf
(x, x′) ≤ mCf̃

(x, x′) + 4δ.

Let m = mCf
(x, x′) denote the merge height of x and x′ w.r.t. Cf . This means that

there exists a connected component C ∈ {y ∈ X | f(y) ≥ m} such that x, x′ ∈ C. Since

∥f − f̃∥∞ = δ, we have that for any point y ∈ C, |f̃(y)− f(y)| ≤ δ and thus f̃(y) ≥ m− δ.

Hence all points in C must belong to the same connected component, call it C̃(⊇ C) ∈ {y ∈

X | f̃(y) ≥ m− δ} with respect to the clustering Cf̃ . It then follows that the merge height

mCf̃
(x, x′) ≥ m− δ. Combining this with that ∥f − f̃∥∞ = δ, we have:

mCf̃
(x, x′) = f̃(x) + f̃(x′)− 2mCf̃

(x, x′)

≤ f(x) + δ + f(x′) + δ − 2m+ 2δ = mCf
(x, x′) + 4δ.
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The proof for mCf
(x, x′) ≤ mCf̃

(x, x′) + δ is symmetric. The theorem then follows. ■

The second result states that given a fixed hierarchical clustering, the cluster tree is

stable w.r.t. small changes of the height function it is equipped with.

Theorem 2.5 (L∞-stability w.r.t. f). Given a cluster tree (X, C), let C1 = (X, C, f1) and

(C)2 = (X, C, f2) be the hierarchical clusterings equipped with two height function f1 and

f2, respectively. Let γ : X×X be the natural correspondence induced by identity on X; that

is, γ = {(x, x) | x ∈ X}. We then have dγ(C1,C2) ≤ 2∥f1 − f2∥∞.

Proof. Set δ := ∥f1 − f2∥∞. Let x, x′ be two arbitrary points from X. We need to show

that |mC1(x, x
′) −mC2(x, x

′)| ≤ 4δ, which will then implies the theorem. In what follows,

we prove that mC2(x, x
′) ≤ mC1(x, x

′) + 4δ.

Let m1 = mC1(x, x
′) denote the merge height of x and x′ w.r.t. C1. This means

that there exists a cluster C ∈ C such that x, x′ ∈ C and f1(C) = m1. Since fi(C) =

miny∈C fi(y), for i = 1, 2, we thus have that f2(C) ∈ [m1 − δ,m1 + δ]. It then follows that

mC2(x, x
′) ≥ f2(C) ≥ m1 − δ. Combining with that ∥f1 − f2∥∞ = δ, we have:

mC2(x, x
′) = f2(x) + f2(x

′)− 2mC2(x, x
′)

≤ f1(x) + δ + f1(x
′) + δ − 2m1 + 2δ = mC1(x, x

′) + 4δ.

The proof for mC1(x, x
′) ≤ mC2(x, x

′) + δ is symmetric. The theorem then follows. ■

Theorem 2.5 in particular leads to the following: Given a density f : X → R supported

on X ⊂ Rd, suppose we have a hierarchical clustering Ĉn constructed from a sample Xn ⊂ X .

However, we do not know the true density function f . Instead, suppose we have a density

estimator producing an empirical density function f̃n : Xn → R. Set Ĉf,n = (Xn, Ĉn, f) as

before, and C̃f̃ ,n = (Xn, Ĉn, f̃n). Theorem 2.5 implies that d(Ĉf,n, C̃f̃ ,n) ≤ ∥f − f̃n∥∞. By
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the triangle inequality, this further bounds

dγ̂n(Cf , C̃f̃ ,n) ≤ dγ̂n(Cf , Ĉf,n) + ∥f − f̃n∥∞. (2.1)

Assuming that the density estimator is consistent, we note that the cluster tree C̃f̃ ,n also

converges to Cf if Ĉf,n converges to Cf .

This has an important implication from a practical point of view. Imagine that we are

given a sequence of more and more samples Xn1 , Xn2 , . . ., and we construct a sequence of

hierarchical clusterings Ĉn1 , Ĉn2 , . . .. In practice, in order to test whether the current hier-

archical clustering converges or not, one may wish to compare two consecutive clusterings

Ĉni and Ĉni+1 and measure their distance. However, since the true density is not available,

one cannot compute the cluster tree distance dγni
(Ĉf,ni

, Ĉf,ni+1
), where the correspondence

is induced by the natural inclusion from Xni ⊆ Xni+1 , that is, γni = {(x, x) | x ∈ Xni}.

Equation (2.1) justifies the use of a consistent empirical density estimator and computing

dγni
(C̃f̃ ,ni

, C̃f̃ ,ni+1
) instead.

2.6 Strong consistency of robust single-linkage

We now analyze the robust single-linkage algorithm of Chaudhuri and Dasgupta (2010) in

the context of our formalism. Chaudhuri and Dasgupta (2010) as well as Chaudhuri et al.

(2014) studied the sense in which robust single-linkage ensures that clusters are separated

and connected at the appropriate levels of the empirical tree. Our analysis translates

their results to our definitions of minimality and separation, thereby reinterpreting the

convergence of robust single-linkage in terms of our merge distortion metric.

2.6.1 Description of the algorithm

We first briefly describe the robust single-linkage algorithm, and refer readers to the work

of Chaudhuri and Dasgupta (2010) for details. The algorithm operates as follows. Given a
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sample Xn of n points drawn from a density f supported on X , let d(x, x′) be the distance

between x, x′ ∈ Xn. Fix parameters α and k, and perform the following steps:

1. For each xi ∈ Xn, set rk(xi) = min{r : B(xi, r) contains k points}, where B(xi, r) is

the ball of radius r around xi.

2. As r grows from 0 to ∞:

(a) Construct a graph Gr with nodes {xi : rk(xi) ≤ r}. Include edge (xi, xj) if

d(xi, xj) ≤ αr.

(b) Let Cn(r) be the connected components of Gr.

The clustering produced by the algorithm is the collection of all connected components

Cn(r) for any r. The clusters exhibit hierarchical structure, and can be interpreted as a

cluster tree. We may therefore discuss the sense in which this discrete tree converges to the

ideal density cluster tree.

As an aside, we note that the robust single-linkage algorithm can be implemented by

applying the usual single-linkage algorithm to a transformed distance matrix. In particular,

let

d̃(x, x′) = max{rk(x), rk(x′), α · d(x, x′)}.

Let C̃n be the single-linkage dissimilarity clustering of (Xn, d̃), and let Cn be the clustering

as returned by the robust single-linkage algorithm described above. It is easy to see that if

C is a cluster of C̃n with two or more elements, then C is also a cluster in Cn. Moreover,

the other direction also holds: if C ′ is a non-singleton cluster in Cn, then it is also a cluster

in C̃n. Hence there is a bijection between the non-singleton clusters of Cn and those of C̃n.

The robust single-linkage clustering Cn differs from C̃n only in the presence of singleton

clusters. In the single-linkage clustering of d̃, each point is in some cluster at level λ = 0;

typically, each point x is in its own singleton cluster {x} unless it is degerate in the sense
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that there exists a point x′ such that d̃(x, x′) = 0. In the robust single-linkage algorithm,

however, a point x does not enter the clustering until the level rk(x).

Therefore, in order to recover the clustering produced by the algorithm of Chaudhuri

and Dasgupta (2010), we need only process the singleton clusters of C̃n. For a singleton

cluster S = {x}, let P be its parent – the smallest distinct cluster in C̃n which contains S.

Let λ be the level at which the parent P was created; i.e., the smallest level λ at which P

is a connected component of the single linkage dissimilarity graph of d̃. Such information

is often retained by off-the-shelf single-linkage implementations. We observe that rk(x)

cannot be greater than λ, since x appears in P . If rk(x) < λ, then the singleton cluster is

valid and should be kept. On the other hand, if rk(x) = λ, the singleton cluster is spurious

and should be deleted.

2.6.2 Proof of consistency

We now demonstrate the strong consistency of robust single-linkage clustering. In what

follows, assume that the density f is: 1) c-Lipschitz; 2) compactly supported (and hence

bounded from above); and 3) such that {f ≥ λ} has finitely-many connected components

for any λ. We will prove that the algorithm ensures minimality and separation. This,

together with the assumptions on f and Theorem 2.2, will imply convergence in the merge

distortion distance.

Suppose we run the robust single-linkage algorithm on a sample of size n. Denote by vd

the volume of the d-dimensional unit hypersphere, and let B(x, r) the closed ball of radius

r around x in Rd. We will write f(B(x, r)) to denote the probability of B(x, r) under f .

Define r(λ) to be the value of r such that vdrdλ = k
n+

Cδ
n

√
kd log n. Here, k is a parameter of

the algorithm which we will constrain, and Cδ is the constant appearing in the Lemma IV.1

of Chaudhuri et al. (2014). First, we must show that in the limit, Gr(λ) contains no points

of density less than λ− ϵ, for arbitrary ϵ.
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Lemma 2.2. Fix ϵ > 0 and λ ≥ 0. Then if α ≥
√
2 and k ≥ (8Cδλ/ϵ)

2 d log n, there exists

an N such that for all n ≥ N , if x ∈ Gr(λ), then f(x) > λ− ϵ.

Proof. Define r̃ = r(λ−ϵ/2). There exists an N such that for any n ≥ N , r̃c ≤ ϵ/4. Consider

any point x ∈ Gr̃. By virtue of x’s membership in the graph, Xn contains k points within

B(x, r̃). Lemma IV.1 in (Chaudhuri et al., 2014) implies that f(B(x, r̃)) > k
n−

Cδ
n

√
kd log n.

From our Lipschitz assumption, we have vdr̃d(f(x) + r̃c) ≥ f(B(x, r̃)) > k
n −

Cδ
n

√
kd log n.

Multiplying both sides by λ− ϵ/2 and substituting gives:

vdr̃
d(λ− ϵ/2)(f(x) + r̃c) =

(
k

n
+
Cδ

n

√
kd log n

)
(f(x) + r̃c),

> (λ− ϵ/2)
(
k

n
− Cδ

n

√
kd log n

)
.

Therefore:

f(x) > (λ− ϵ/2)
(
k − Cδ

√
kd log n

k + Cδ

√
kd log n

)
− r̃c,

≥
(
1− 2

Cδ

√
d log n√
k

)
(λ− ϵ/2)− ϵ/4,

≥
(
1− ϵ

4λ

)
(λ− ϵ/2)− ϵ/4,

≥ λ− ϵ.

Hence for any point x ∈ Gr̃, f(x) > λ− ϵ. Note that r̃ > r(λ), implying that any point in

Gr(λ) is also in Gr̃. Therefore if x ∈ Gr(λ), f(x) > λ− ϵ. ■

We now make our claim. We will use the following fact without proof: For any A ∈

{f ≥ λ} and δ > 0, there exists an N such that for all n ≥ N , if A ∩Xn ̸= ∅, there is at

least one point x ∈ A∩Xn with f(x) < λ+δ. This follows immediately from the continuity

of f and the inequalities in the Lemma IV.1 of Chaudhuri et al. (2014).

Theorem 2.6. Robust single-linkage converges in probability to the density cluster tree Cf

in the merge distortion distance.
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Proof. It is sufficient to prove minimality and separation, as then Theorem 2.2 will imply

convergence. Fix any ε > 0, and let A be a connected component of {f ≥ λ}. Define

σ = ε/(2c), and let Aσ be the set A thickened by closed balls of radius σ. Define λ′ :=

infx∈Aσ f(x) ≥ λ − ε/2. Theorem IV.7 in (Chaudhuri et al., 2014) implies that there

exists an N1 such that for all n ≥ N1, A ∩ Xn is connected in Gr(λ′). Take ϵ = ε/2

in our Lemma 2.2; there exists an N2 above which each point x in Gr(λ′) has density

f(x) > λ′− ϵ ≥ (λ−ε/2)−ε/2 = λ−ε. Then for all n ≥ max{N1, N2}, A∩Xn is connected

in Gr(λ′) at level no less than λ− ε. This proves minimality.

Again fix ε > 0 and let A and A′ be connected components of {f ≥ λ} merging at some

height µ = mCf
(A ∪ A′). Let Ã and Ã′ be the connected components of {f ≥ µ + ε/2}

containing A and A′, respectively. Define σ = ε/(4c), and let Ãσ (resp. Ã′
σ) be the set Ã

(resp. Ã′) thickened by closed balls of radius σ. Define µ′ := infx∈Ãσ∪Ã′
σ
f(x) ≥ µ + ε/4.

Then Lemma IV.3 in (Chaudhuri et al., 2014) implies3 that there exists some N1 such that

for all n ≥ N1, Ã∩Xn and Ã′ ∩Xn, are disconnected in Gr(µ
′) and individually connected.

Let N2 be large enough that there exists a point x1 ∈ Ã ∩ Xn with f(x1) < µ + ε. Then

for all n ≥ max{N1, N2}, A ∩ Xn and A′ ∩ Xn are separated at level µ + ε. This proves

separation. ■

3 More precisely, Lemma IV.3 requires A and A′ to be so-called (σ, ϵ)-separated, for some σ and ϵ. It
follows from the Lipschitz-continuity of f that there is some ϵ so that A and A′ are (σ, ϵ)-separated for this
choice of σ.
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Chapter 3

The graphon model

In this chapter, we consider the setting in which the objects to be clustered are the vertices

of a graph sampled from a graphon – a very general random graph model of significant recent

interest. As in the previous chapter, we develop a statistical theory of graph clustering in

the graphon model using the core idea of the merge distortion. The specific contributions of

this chapter are threefold. First, we define the clusters of a graphon. Our definition results

in a graphon having a tree of clusters, which we call its graphon cluster tree. We introduce

an object called the mergeon which is a particular representation of the graphon cluster tree

that encodes the heights at which clusters merge. Second, we develop a notion of consistency

for graph clustering algorithms in which a method is said to be consistent if its output

converges to the graphon cluster tree. Here the graphon setting poses subtle yet fundamental

challenges which differentiate it from classical clustering models, and which must be carefully

addressed. Third, we prove the existence of consistent clustering algorithms. In particular,

we provide sufficient conditions under which a graphon estimator leads to a consistent

clustering method. We then identify a specific practical algorithm which satisfies these

conditions, and in doing so present a simple graph clustering algorithm which provably

recovers the graphon cluster tree.

Notation. We will use [n] to denote the set {1, . . . , n}, △ for the symmetric difference, µ

for the Lebesgue measure on [0, 1], and bold letters to denote random variables.
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3.1 Related work

Graphons are objects of significant recent interest in graph theory, statistics, and machine

learning. The theory of graphons is rich and diverse; A graphon can be interpreted as a

generalization of a weighted graph with uncountably many nodes, as the limit of a sequence

of finite graphs, or, more importantly for the present work, as a very general model for

generating unweighted, undirected graphs. Conveniently, any graphon can be represented

as a symmetric, measurable function W : [0, 1]2 → [0, 1], and it is this representation that

we use throughout this chapter.

The graphon as a graph limit was introduced in recent years by Lovász and Szegedy

(2006), Borgs et al. (2008), and others. The interested reader is directed to the book by

Lovász (2012) on the subject. There has also been a considerable recent effort to produce

consistent estimators of the graphon, including the work of Wolfe and Olhede (2013), Chan

and Airoldi (2014), Airoldi et al. (2013), Rohe et al. (2011), and others. We will analyze

a simple modification of the graphon estimator proposed by Zhang et al. (2015) and show

that it leads to a graph clustering algorithm which is a consistent estimator of the graphon

cluster tree.

Much of the previous statistical theory of graph clustering methods assumes that graphs

are generated by the so-called stochastic blockmodel. The simplest form of the model gener-

ates a graph with n nodes by assigning each node, randomly or deterministically, to one of

two communities. An edge between two nodes is added with probability α if they are from

the same community and with probability β otherwise. A graph clustering method is said

to achieve exact recovery if it identifies the true community assignment of every node in

the graph with high probability as n→∞. The blockmodel is a special case of a graphon

model, and our notion of consistency will imply exact recovery of communities.

Stochastic blockmodels are widely studied, and it is known that, for example, spectral

methods like that of McSherry (2001) are able to recover the communities exactly as n→∞,
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provided that α and β remain constant, or that the gap between them does not shrink too

quickly. For a summary of consistency results in the blockmodel, see Abbe et al. (2015),

which also provides information-theoretic thresholds for the conditions under which exact

recovery is possible. In a related direction, Balakrishnan et al. (2011) examines the ability

of spectral clustering to withstand noise in a hierarchical block model.

3.2 In relation to the density setting

As discussed in the previous chapter of this dissertation, the problem of defining the un-

derlying cluster structure of a probability distribution goes back to Hartigan (1981) who

considered the setting in which the objects to be clustered are points sampled from a density

f : X → R+. In this case, the high density clusters of f are defined to be the connected

components of the upper level sets {x : f(x) ≥ λ} for any λ > 0. The set of all such clusters

forms the so-called density cluster tree. Hartigan (1981) defined a notion of consistency

for the density cluster tree, and proved that single-linkage clustering is not consistent. In

recent years, Chaudhuri and Dasgupta (2010) and Kpotufe and Luxburg (2011) have demon-

strated methods which are Hartigan consistent. The previous chapter introduced a distance

between a clustering of the data and the density cluster tree, called the merge distortion

metric. A clustering method is said to be consistent if the trees it produces converge in

merge distortion to density cluster tree. It was shown that convergence in merge distortion

is stronger than Hartigan consistency, and that the method of Chaudhuri and Dasgupta

(2010) is consistent in this stronger sense.

In the present setting, we will be motivated by the approach taken in Hartigan (1981)

and the previous chapter. We note, however, that there are significant and fundamental

differences between the density case and the graphon setting. Specifically, it is possible for

two graphons to be equivalent in the same way that two graphs are: up to a relabeling of

the vertices. As such, a graphon W is a representative of an equivalence class of graphons
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modulo appropriately defined relabeling. It is therefore necessary to define the clusters of W

in a way that does not depend upon the particular representative used. A similar problem

occurs in the density setting when we wish to define the clusters not of a single density

function, but rather of a class of densities which are equal almost everywhere; Steinwart

(2011) provides an elegant solution. But while the domain of a density is equipped with a

meaningful metric – the mass of a ball around a point x is the same under two equivalent

densities – the ambient metric on the vertices of a graphon is not useful. As a result,

approaches such as that of Steinwart (2011) do not directly apply to the graphon case, and

we must carefully produce our own. Additionally, we will see that the procedure for sampling

a graph from a graphon involves latent variables which are in principle unrecoverable from

data. These issues have no analogue in the classical density setting, and present very distinct

challenges.

3.3 Measure theory preliminaries

As we will see, the graphon is a measure-theoretic object. As such, we will make use of

various notions and results from measure theory throughout this chapter. We collect some

of these here for convenience.

In what follows, we will often deal with collections of sets which differ only by sets of

zero measure. More precisely, let (Ω,Σ, µ) be a measure space. Let A,A′ be any measurable

sets and define ∼∅ to be the relation A ∼∅ A
′ ⇔ µ(A△ A′) = 0; that is, two measurable

sets are equivalent under ∼∅ if they differ by a null set. Write Σ/∼∅ for the quotient

space of measurable sets by ∼∅, and denote by [A]∅ the equivalence class containing the

set A. Throughout, we use script letters such as A to denote these equivalence classes of

measurable sets modulo null sets.

We can often use the normal set notation to manipulate such classes without ambiguity.

For instance, if A and A ′ are two classes in Σ/∼∅, we define A ∪ A ′ to be [A ∪ A′]∅,
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where A and A′ are arbitrary members of A and A ′. A ∩ A ′ and A \ A ′ are defined

similarly. We can define A ×A ′ in this manner too; note that the result is an equivalence

class in Σ × Σ/∼∅, where the relation ∼∅ is implicitly assumed to be with respect to the

product measure µ × µ. Similarly, we can unambiguously order such equivalence classes.

For example, we write A ⊂ A ′ to denote µ(A \A ′) = 0.

In some instances it will be more convenient to work with sets as opposed to equivalence

classes of sets. In such cases we will use a section map ρ which returns an (often arbitrary)

member of the class, ρ(A ).

We will also work with collections of measurable sets. If the collection is closed under

countable unions, we may speak about the “largest” measurable sets in the collection and

the “smallest”, as the following definition makes precise:

Definition 3.1 (Essential maxima/minima). Let (Ω,Σ, µ) be a measure space, with µ a

finite measure (i.e., µ(Ω) < ∞). Let A ⊂ Σ be closed under countable unions. Define the

set of essential maxima of A by

essmaxA = {M ∈ A : µ(A \M) = 0 ∀A ∈ A}.

Likewise, define the set of essential minima of A by

essminA = {M ∈ A : µ(M \A) = 0 ∀A ∈ A}.

The essential maxima and minima satisfy the following claim:

Claim 3.1. Let (Ω,Σ, µ) be a measure space with µ a finite measure. Let A ⊂ Σ be

closed under countable unions. If A is nonempty, essmaxA and essminA are nonempty.

Furthermore, for any M,M ′ ∈ essmaxA, µ(M △M ′) = 0; the same is true for M,M ′ ∈

essminA.
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Proof. The claim holds trivially if A is empty, so suppose it is not. Let τ = supA∈A µ(A),

and note that τ is finite since µ(Ω) is finite. Then for every n ∈ N+, there exists a set An ∈ A

such that τ − µ(An) < 1/n. Construct the sequence ⟨Bn⟩n∈N+ by defining Bn =
∪n

i=1Ai.

Then Bn ∈ A for every n, since it is the countable union of sets in A. Furthermore,

Bn ⊆ Bn+1, and limn→∞ µ(Bn) = τ . Define M =
∩∞

n=1Bn =
∩∞

n=1An. Then M ∈ A since

it is a countable union of elements of A, and by continuity of measure µ(M) = τ .

First we show that for any set A ∈ A, µ(A \M) = 0. Suppose for a contradiction that

µ(A\M) ̸= 0. We have A∪M = (A\M)∪M , such that µ(A∪M) = µ(A\M)+µ(M) > τ .

But A ∪M is in A, since A is closed under unions. This violates the fact that τ is the

supremal measure of any set in A, and hence it must be that µ(A \M) = 0. Therefore

M ∈ essmaxA.

Now suppose M ′ is an arbitrary element of essmaxA. We have just seen that µ(M ′\M)

must be zero, since M ′ ∈ A. Likewise, µ(M \M ′) = 0. Therefore

µ(M △M ′) = µ((M \M ′) ∪ (M ′ \M)) = µ(M \M ′) + µ(M ′ \M) = 0

where we used the fact that µ is an additive set function and M \M ′ and M ′ \M disjoint.

It is also clear that if M ∈ essmaxA and N is any null set, then M ∪ N and M \ N are

also essential maxima. ■

3.4 The graphon model

In order to discuss the statistical properties of a graph clustering algorithm, we must first

model the process by which graphs are generated. Formally, a random graph model is a

sequence of random variables G1,G2, . . . such that the range of Gn consists of undirected,

unweighted graphs with node set [n], and the distribution of Gn is invariant under relabeling

of the nodes – that is, isomorphic graphs occur with equal probability. A random graph

model of considerable recent interest is the graphon model, in which the distribution over

44



W(x,y)
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Figure 3.1: A graphon W .

graphs is determined by a symmetric, measurable function W : [0, 1]2 → [0, 1] called a

graphon. Informally, a graphon W may be thought of as the weight matrix of an infinite

graph whose node set is the continuous unit interval, so that W (x, y) represents the weight

of the edge between nodes x and y.

An example of a graphon W is shown in Figure 3.1; in this particular case, the graphon

function is W (x, y) =
√

1− x2 − y2. It is conventional to plot the graphon as one typi-

cally plots an adjacency matrix: with the origin in the upper-left corner. Darker shades

correspond to higher values of W .

Interpreting W (x, y) as a probability suggests the following graph sampling procedure:

To draw a graph with n nodes, we first select n points x1, . . . ,xn at random from the

uniform distribution on [0, 1] – we can think of these xi as being random “nodes” in the

graphon. We then sample a random graph G on node set [n] by admitting the edge (i, j)

with probability W (xi,xj); by convention, self-edges are not sampled. It is important to

note that while we begin by drawing a set of nodes {xi} from the graphon, the graph as

given to us is labeled by integers. Therefore, the correspondence between node i in the

graph and node xi in the graphon is latent.
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It can be shown that this sampling procedure defines a distribution on finite graphs,

such that the probability of graph G = ([n], E) is given by

PW (G = G) =

∫
[0,1]n

∏
(i,j)∈E

W (xi, xj)
∏

(i,j)̸∈E

[1−W (xi, xj)]
∏
i∈[n]

dxi. (3.1)

For a fixed choice of x1, . . . , xn ∈ [0, 1], the integrand represents the likelihood that the

graph G is sampled when the probability of the edge (i, j) is assumed to be W (xi, xj). By

integrating over all possible choices of x1, . . . , xn, we obtain the probability of the graph.

A very general class of random graph models may be represented as graphons. In

particular, a random graph model G1,G2, . . . is said to be consistent if the random graph

Fk−1 obtained by deleting node k from Gk has the same distribution as Gk. A random

graph model is said to be local if whenever S, T ⊂ [k] are disjoint, the random subgraphs of

Gk induced by S and T are independent random variables. A result of Lovász and Szegedy

(2006) is that any consistent, local random graph model is equivalent to the distribution on

graphs defined by PW for some graphon W ; the converse is true as well. That is, any such

random graph model is equivalent to a graphon.

A particular random graph model is not uniquely defined by a graphon – it is clear

from Equation (3.1) that two graphons W1 and W2 which are equal almost everywhere

(i.e., differ on a set of measure zero) define the same distribution on graphs. In fact, the

distribution defined by W is unchanged by “relabelings” of W ’s nodes. More formally,

if Σ is the sigma-algebra of Lebesgue measurable subsets of [0, 1] and µ is the Lebesgue

measure, we say that a relabeling function φ : ([0, 1],Σ)→ ([0, 1],Σ) is measure preserving

if for any measurable set A ∈ Σ, µ(φ−1(A)) = µ(A). We define the relabeled graphon Wφ

by Wφ(x, y) =W (φ(x), φ(y)). By analogy with finite graphs, we say that graphons W1 and

W2 are weakly isomorphic if they are equivalent up to relabeling, i.e., if there exist measure

preserving maps φ1 and φ2 such that Wφ1
1 =Wφ2

2 almost everywhere. Weak isomorphism is

an equivalence relation, and most of the important properties of a graphon in fact belong to
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(a) Graphon W . (b) Wφ, weakly isomor-
phic to W .

(c) An instance of a
graph adjacency sampled
from W .

Figure 3.2: Example graphons and adjacencies.

its equivalence class. For instance, a powerful result of Lovász (2012) is that two graphons

define the same random graph model if and only if they are weakly isomorphic.

Figure 3.2a illustrates a graphon W , while Figure 3.2b depicts a graphon Wφ which is

weakly isomorphic to W . In particular, Wφ is the relabeling of W by the measure preserving

transformation φ(x) = 2x mod 1. As such, the graphons shown in Figures 3.2a and 3.2b

define the same distribution on graphs. Figure 3.2c shows the adjacency matrix A of a graph

of size n = 50 sampled from the distribution defined by the equivalence class containing W

and Wφ. Note that it is in principle not possible to determine from A alone which graphon

W or Wφ it was sampled from, or to what node in W a particular column of A corresponds

to.

3.5 The clusters of a graphon

We now identify the cluster structure of a graphon. We will define a graphon’s clusters

such that they are analogous to the maximally-connected components of a finite graph. A

consequence of our definition is that the clusters of equivalent graphons are related in the

natural way.
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3.5.1 Connectedness

Consider a finite weighted graph. It is natural to cluster the graph into connected compo-

nents. In fact, because of the weighted edges, we can speak of the clusters of the graph

at various levels. More precisely, we say that a set of nodes A is internally connected –

or, from now on, just connected – at level λ if for every pair of nodes in A there is a path

between them such that every node along the path is also in A, and the weight of every

edge in the path is at least λ. Equivalently, A is connected at level λ if and only if for

every partitioning of A into disjoint, non-empty sets A1 and A2 there is an edge of weight

λ or greater between A1 and A2. The clusters at level λ are then the largest connected

components at level λ.

A graphon is, in a sense, an infinite weighted graph, and we will define the clusters of

a graphon using the example above as motivation. Our first step is to adopt a notion of

connectedness for graphons. In doing so, we must be careful to make our notion robust to

changes to the graphon on a set of zero measure, as such changes do not affect the graph

distribution induced by the graphon. We base our definition on that of Janson (2008), who

defined what it means for a graphon to be connected as a whole. We extend the definition in

(Janson, 2008) to speak of the connectivity of subsets of the graphon’s nodes at a particular

height. Our definition is analogous to the notion of internal connectedness in finite graphs.

Definition 3.2 (Connectedness). Let W be a graphon, and let A ⊂ [0, 1] be a set of positive

measure. We say that A is disconnected at level λ if there exists a measurable S ⊂ A such

that 0 < µ(S) < µ(A), and W < λ almost everywhere on S × (A \ S). Otherwise, we say

that A is connected at level λ.

Our definition of connectedness is illustrated in Figure 3.3. The figure depicts a piecewise-

constant graphon W . Let the set A correspond to the purple bar, let the set S be the green

bar, and let the set A \ S be the yellow bar. The set A is disconnected at any level λ > λ2

since W ≤ λ2 almost everywhere on S × (A \ S) (the blue region). The set A is connected
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\

× (A \ S)

Figure 3.3: Graphon connectedness.

at any level λ ≤ λ2, since for any way of dividing A into non-null S′ and A \S′, W ≥ λ2 on

some non-null subset of S′ × (A \ S′).

An important consequence of this definition is that if two overlapping sets are connected,

their union must also be connected:

Claim 3.2. Let W be a graphon, and suppose A and A′ are measurable sets with positive

measure, and that each is connected at level λ in W . If µ(A ∩ A′) > 0, then A ∪ A′ is

connected at level λ.

Proof. Suppose µ(A∩A′) > 0 and that A∪A′ is disconnected at level λ. Then, by definition,

there exists a measurable set S ⊂ A∪A′ such that 0 < µ(S) < µ(A∪A′) and W < λ almost

everywhere on S × ((A ∪A′) \ S).

It is either the case that 0 < µ(A ∩ S) < µ(A) or 0 < µ(A′ ∩ S) < µ(A′), as otherwise

we would have µ(S) = µ(A ∪ A′). If 0 < µ(A ∩ S) < µ(A), then A \ S is of positive

measure. Since W < λ almost everywhere on S × ((A ∪ A′) \ S), it follows that W < λ

almost everywhere on S× (A \S). This implies that A is disconnected at level λ. Likewise,

if 0 < µ(A′ ∩ S) < µ(A′), it follows that W < λ almost everywhere on S × (A′ \ S), and

hence A′ is disconnected at level λ. Both cases lead to contradictions, and so it must be

that A ∪A′ is connected at level λ. ■
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3.5.2 Clusters as connected components

A novel contribution of this chapter is the definition of a graphon cluster, which we now make

precise. Motivated by the density setting and Hartigan’s notion of high density clusters, we

frame our definition in terms of maximally-connected components. We begin by gathering

all subsets of [0, 1] which belong to some cluster at level λ. Naturally, if a set is connected

at level λ, it is also in a cluster at level λ; for technical reasons1, we will also say that a set

which is connected at all levels λ′ < λ (though perhaps not at λ) is contained in a cluster

at level λ, as well. That is, for any λ, the collection Aλ of sets which are in some cluster at

level λ is Aλ = {A ∈ Σ : µ(A) > 0 and A is connected at every level λ′ < λ}. Now suppose

A1, A2 ∈ Aλ, and that there is a set A ∈ Aλ such that A ⊃ A1 ∪ A2. Naturally, the cluster

to which A belongs should also contain A1 and A2, since both are subsets of A. We will

therefore consider A1 and A2 to be equivalent, in the sense that they are contained in the

same cluster at level λ.

More formally, we define a relation �λ on Aλ by A1 �λ A2 ⇐⇒ ∃A ∈ Aλ s.t. A ⊃

A1 ∪A2. It can be verified that �λ is in fact an equivalence relation on Aλ:

Claim 3.3. The relation �λ is an equivalence relation on Aλ.

Proof. The symmetry and reflexive properties of �λ are clear. We need only prove that

�λ is transitive. Suppose A1�λ A2 and A2�λ A3. By the definition of�λ, there exist

measurable sets B12, B23 ∈ Aλ such that B12 ⊃ A1∪A2 and B23 ⊃ A2∪A3. Since both B12

and B23 contain A2, a set of positive measure, their intersection is not null. Furthermore,

B12 and B23 are each connected at every level λ′ < λ, by virtue of being in Aλ. Hence we

can use Claim 3.2 above to conclude that their union B12 ∪B23 is connected at every level

λ′ < λ, and is hence an element of Aλ. Since A1 ∪A3 ⊂ B12 ∪B23, we have A1�λ A3. ■
1In what follows, we will define the merge height of a pair of clusters C ,C ′. Making this technical

assumption will allow us to say that if C and C ′ merge at some level λ, then there is a cluster C̃ at level λ
which contains both C and C ′.
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Each equivalence class A in the quotient space Aλ/�λ consists of connected sets which

should intuitively be clustered together at level λ. Naturally, we will define the clusters to

be the largest elements of each class; in some sense, these are the maximally-connected

components at level λ. More precisely, suppose A is such an equivalence class. It is clear

that in general no single member A ∈ A can contain all other members of A , since adding

a null set (i.e., a set of measure zero) to A results in a larger set A′ which is nevertheless

still a member of A . However, we can find a member A∗ ∈ A which contains all but a null

set of every other set in A . More formally, we say that A∗ is an essential maximum of the

class A if A∗ ∈ A and for every A ∈ A , µ(A \A∗) = 0; see Definition 3.1. A∗ is of course

not unique, but it is unique up to a null set; i.e., for any two essential maxima A1, A2 of

A , we have µ(A1△A2) = 0. We will write the set of essential maxima of A as essmaxA .

Naturally, we define clusters as the maximal members of each equivalence class in Aλ/�λ:

Definition 3.3 (Clusters). The set of clusters at level λ in W , written CW (λ), is defined

to be the countable collection CW (λ) = { essmaxA : A ∈ Aλ/�λ} .

We must be careful to ensure that our notion of a cluster is well-defined. That this is

so is a consequence of the definition of connectedness in Definition 3.2 above.

Claim 3.4. Let C be an equivalence class in Aλ/�λ. Then essmaxC is well-defined and

non-empty.

Proof. We will invoke Claim 3.1 to show that essmaxC has the desired properties. To do

so, we need only show that C is closed under countable unions. Let F ⊂ C be a countable

subset of C , and let F =
∪

F . We will show that F is connected at every level λ′ < λ and

is thus contained in F by its definition.

Suppose F is disconnected at some level λ′ < λ. Then there exists a set S ⊂ F such

that 0 < µ(S) < µ(F ) and W < λ′ almost everywhere on S×(F \S). Now, there must exist

sets F1, F2 ∈ F such that µ(S ∩ F1) > 0 and µ((F \ S)∩ F2) > 0. Let F12 = F1 ∪ F2. Note

that F is closed under finite union by the definition of�λ, and so F12 ∈ F , meaning that
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Figure 3.4: The clusters of a graphon at level λ3.

F12 is connected at λ′. Furthermore, F12 ⊂ F , so that (F12 ∩ S) ∪ (F12 ∩ (F \ S)) = F12.

But by assumption W < λ′ almost everywhere on S × (F \ S), and so in particular W < λ′

almost everywhere on (F12 ∩S)× (F12 ∩ (F \S)). But this implies that F12 is disconnected

at level λ′, which is a contradiction. It must therefore be the case that F is connected at

every λ′ < λ, and so F ∈ Aλ.

It is clearly true that for all F ′ ∈ F , F ′ �λ F , since F = F ∪ F ′. We therefore have

that F ∈ F . ■

Note that a cluster C of a graphon is not a subset of the unit interval per se, but rather

an equivalence class of subsets which differ only by null sets. It is often possible to treat

clusters as sets rather than equivalence classes, and we may write µ(C ), C ∪C ′, etc., without

ambiguity. In addition, if φ : [0, 1] → [0, 1] is a measure preserving transformation, then

φ−1(C ) is well-defined.

For a concrete example of our notion of a cluster, consider the graphon W depicted in

Figure 3.4. A, B, and C represent sets of the graphon’s nodes. By our definitions there are

three clusters at level λ3: A , B, and C . Clusters A and B merge into a cluster A ∪B at

level λ2, while C remains a separate cluster. Everything is joined into a cluster A ∪B ∪C

at level λ1.
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Figure 3.5: Clusters of weakly-isomorphic graphons

3.5.3 Clusters of weakly-isomorphic graphons

We have taken care to define the clusters of a graphon in such a way as to be robust to

changes of measure zero to the graphon itself. In fact, clusters are also robust to measure

preserving transformations:

Theorem 3.1. Let W be a graphon and φ a measure preserving transformation. Then C

is a cluster of Wφ at level λ if and only if there exists a cluster C ′ of W at level λ such

that C = φ−1(C ′).

Figure 3.5 illustrates the above theorem. Wφ is the relabeling of the graphon W by the

measure preserving transformation φ(x) = 2x mod 1. C ′ is a cluster of W at some level λ.

It follows from Theorem 3.1 that φ−1(C ) is a cluster of Wφ at that same level. Moreover,

the theorem states that this correspondence is in fact a bijection.

The proof of Theorem 3.1 will comprise the remainder of the section. It is made non-

trivial by the fact that a measure preserving transformation is in general not injective. For

instance, φ(x) = 2x mod 1 defines a measure preserving transformation, but is not an

injection. Even worse, it is possible for a measure preserving transformation to map a set
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of zero measure to a set of positive measure – it is only the measure of the preimage which

must be preserved.

Twins and non-separating sets.

We will mitigate the fact that φ may not be injective by working whenever possible with

sets whose image is necessarily stable under even non-injective measure preserving transfor-

mations, in the sense that φ−1(φ(A)) = A. We will show that such stability is a property

of sets which contain all of their so-called twin points, defined as follows (Lovász, 2012):

Definition 3.4 (Twin points). Two points x and x′ are twins in W if W (x, y) = W (x′, y)

for almost every y ∈ [0, 1]. We say that a set A separates twins if there exist twins x and x′

such that x ∈ A and x′ ̸∈ A. The relation of being twins is an equivalence relation on [0, 1].

We will define a probability space on the equivalence classes of the twin relation as

follows – see the book by Lovász (2012) for the full construction:

Definition 3.5. Let W be a graphon. The twin measure space (ΩW ,ΣW , µW ) is defined

as follows. Let ΩW be the set of equivalence classes under the twin relation in W , and let

ψW (x) denote the equivalence class in ΩW containing x. Note that ψ−1
W (ψW (x)) is simply

the set of twins of x. If Σ is the sigma-algebra of Lebesgue measurable subsets of [0, 1],

create a new sigma-algebra by defining

ΣW = {ψW (X) : X ∈ Σ, X does not separate twins in W}.

Observe that for any A ∈ ΣW , ψ−1
W (A) does not separate twins. Furthermore, we define the

measure µW (A) = µ(ψ−1
W (A)) for A ∈ ΣW . It can be shown that, with this measure, ψW is

measure preserving.

We note in passing that the random graph model defined by any graphon W can also

be represented as a ΣW -measurable function WT : ΩW × ΩW → [0, 1] defined on the
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probability space (ΩW ,ΣW , µW ), as is shown by Lovász (2012). WT is called a “twin-free”

graphon, since no two points in ΩW are twins in WT . In this representation, two twin-free

graphons are weakly isomorphic if there exists a measure preserving bijection relating them.

Our definitions of connectedness, clusters, mergeons, etc. can be formulated for twin-free

graphons with minor modifications, and the existence of the measure preserving bijection

between twin-free graphons means that clusters transfer trivially between weakly isomorphic

graphons. In a sense, the twin-free setting is a more natural one for the considerations of

the current section; We leave a more in-depth investigation of this direction to future work.

We first observe some useful properties of the map ψW .

Claim 3.5. Suppose A ⊂ [0, 1] does not separate twins in W . Then ψ−1
W (ψW (A)) = A and

A is Σ-measurable.

Proof. It is clear that A ⊂ ψ−1
W (ψW (A)). Now let x ∈ ψ−1

W (ψW (A)). Then there exists a

y ∈ A such that ψW (x) = ψW (y). But then x and y are twins in Wφ. Since A does not

separate twins, x ∈ A, proving that A = ψ−1
W (ψW (A)).

Now we prove that A is Σ-measurable. ψW is a measurable function, and so the inverse

image of any ΣW -measurable set is Σ-measurable. We have that ψW (A) is ΣW -measurable,

since A does not separate twins. Hence ψ−1
W (ψW (A)) = A is Σ-measurable. ■

Claim 3.6. Let W be a graphon and let A ⊂ [0, 1]. Then ψ−1
W (ψW (A)) is Σ-measurable.

Proof. It is clear that ψ−1
W (ψW (A)) does not separate twins in W . Hence it is Σ-measurable

by the previous claim. ■

Sets which do not separate twins are particularly nice, as the following formalizes:

Lemma 3.1. Let W be a graphon and φ a measure preserving transformation. Suppose A

does not separate twins in Wφ. Then

1. φ−1(φ(A)) = A, and
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2. µ(φ(A)) = µ(A).

Proof. For the first claim, we know that A ⊆ φ−1(φ(A)). Now we show the other inclusion.

Let x ∈ φ−1(φ(A)). Then there exists an x′ in φ(A) such that φ(x) = φ(x′). But then x and

x′ are twins, such that x and x′ are both in A. Hence x ∈ A, proving the claim. The second

claim follows immediately since φ is measure preserving. That is, µ(φ−1(φ(A))) = µ(φ(A)),

but since φ−1(φ(A)) = A, µ(φ(A)) = µ(A). ■

Non-separating cluster representatives.

A graphon cluster C is an equivalence class of sets modulo null sets. When working with

clusters, it is often useful to take a particular member of the equivalence class as a repre-

sentative. We will now show that we may always find a cluster representative which does

not separate twins, and is therefore “nice” in the sense made precise above.

To begin, consider an arbitrary measurable set C which is not necessarily a cluster

representative. In general C may separate twins in W , but we can always find a larger set

which contains almost all of C, but which does not separate twins. In fact, there may be

many such sets; we call the collection of them which has minimal measure the family of C:

Definition 3.6. Let W be a graphon and let (ΩW ,ΣW , µW ) be the corresponding twin

measure space for W . For any Σ-measurable set C, construct the collection

FC = {A ∈ ΣW : µ(C \ ψ−1
W (A)) = 0}.

Observe that for any A ∈ FC , ψ−1
W (A) contains almost all of C and does not separate twins

in W . Let essminFC be as in Definition 3.1. We define the family of C, written FamW C,

as

FamW C = {ψ−1
W (X) : X ∈ essminFC}.
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It is clear that FamW C cannot be empty, as ψ−1
W (ΩW ) must contain almost all of C. To

be rigorous, we must argue that FC is closed under countable intersections so that it has

a well-defined set of essential minima. To see this, let F be any countable subset of FC .

Define D =
∩
F . Then D ∈ ΣW since it is a sigma-algebra, and we have

µ
(
C \ ψ−1

W (D)
)
= µ

(
C \ ψ−1

W

(∩
F
))

,

= µ

(
C \

∩
F∈F

ψ−1
W (F )

)
,

= µ

( ∪
F∈F

C \ F

)
,

= 0,

where the last step follows because each F has the property that C \ F is a null set, and

the union of countably many null sets is null. Hence D ∈ FC .

In general, if A ∈ FamW C, it may be the case that A is much larger than C in the sense

that µ(A \ C) > 0. However, if C is in fact a graphon cluster we can show that A and C

differ only by null sets. As a consequence, any element of FamW C is a cluster representative

which does not separate twins, as the following lemma makes precise:

Lemma 3.2. Let W be a graphon and suppose C is a cluster at level λ in W . Let C be

an arbitrary representative of the cluster C . Let C̄ ∈ FamW C. Then µ(C △ C̄) = 0, and

hence C̄ is a representative of the cluster C which does not separate twins.

Proof. We know that C \ C̄ is a null set since C̄ must contain all but a null set of C by

the definition of FamW , so we need only show that C̄ \ C is null. Suppose otherwise. That

is, let R = C̄ \ C and suppose µ(R) > 0. Let A be any subset of R with positive measure.

There are two cases: (1) For some λ′ < λ, W < λ′ almost everywhere on A × (C̄ \ A), or

(2) for every λ′ < λ, W ≥ λ′ on some subset of A× (C̄ \A) of positive measure.
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Suppose case (1) holds for some λ′. Then for almost all a ∈ A it is true that W (a, y) < λ′

for almost every y ∈ C̄ \A. That is, let

Â = {a ∈ A :W (a, y) < λ′ for almost every y ∈ C̄ \A}.

Then µ(Â) = µ(A) and W < λ almost everywhere on Â×(C̄ \Â). Define Ā = ψ−1
W (ψW (Â)).

There are two subcases: Either (1a) Ā ∩ C is null, or (1b) it is of positive measure.

Consider the first subcase. Define D = ψW (C̄) \ ψW (Ā). We will show that ψ−1
W (D)

contains C except for a set of zero measure, and so ψ−1
W (D) ∈ FamW C. But as we will see,

µ(ψ−1
W (D)) < µ(C̄), which cannot be. We have

ψ−1
W (D) = ψ−1

W (ψW (C̄) \ ψW (Ā))

= ψ−1
W (ψW (C̄)) \ ψ−1

W (ψW (Ā))

= C̄ \ Ā

where the last step follows since C̄ and Ā do not separate twins. Therefore,

C ∩ ψ−1
W (D) = C ∩ (C̄ \ Ā)

= (C ∩ C̄) ∪ (C ∩ Ā)

But C ∩ Ā is a null set, so µ(C ∩ ψ−1
W (D)) = µ(C ∩ C̄) = µ(C). This implies that µ(C \

ψ−1
W (D)) = 0, and hence ψ−1

W (D) ∈ FamW C. But µW (D) = µW (ψW (C̄) \ ψW (Ā)), and

ψW (Ā) ⊂ ψW (C̄) with µW (ψW (Ā)) = µ(Ā) > 0. Therefore, µW (D) < µW (ψW (C̄)), and so

µ(ψ−1
W (D)) < µ(C). This cannot be, since all elements of FamW C differ only by null sets.

Hence it cannot be that Ā ∩ C is null.

Suppose case (1b) holds, then. That is, suppose Ā ∩ C is not null. Then for every

x ∈ Ā ∩ C it is true that W (x, y) < λ′ for almost all y ∈ C̄ \ A. In particular, since

C \ (A ∩ C) ⊂ C̄ \A, we have that W < λ′ almost everywhere on (Ā ∩ C)× (C \ Ā). This
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means that C is disconnected at level λ′, which violates the assumption that C is a cluster

at λ > λ′.

Both subcases lead to contradictions, and so (1) cannot hold. Therefore, it must be that

case (2) holds: For every λ′ < λ, W ≥ λ′ on some subset of A× (C̄ \A). Furthermore, this

must hold for arbitrary A ⊂ R with positive measure. This implies that C̄ is connected at

every level λ′ < λ, and hence part of a cluster at level λ. To see this, let S, T ⊂ C̄ such

that S has positive measure and S ∪ T = C̄. Without loss of generality, assume A ∩ S is

not null – if it is, swap S and T . Then T ∩ (C̄ \ A) is not null. Therefore W ≥ λ on some

subset of S × T with positive measure – namely, (S ∩ A)× (T ∩ (C̄ \ A)). Since this holds

for arbitrary S and T , C̄ is connected.

Therefore, both cases lead to contradictions under the assumption that µ(R) > 0. Hence

µ(R) = 0, and µ(C△C̄) = 0. C̄ does not separate twins since C̄ ∈ FamW (C). Furthermore,

µ(C △ C̄) = 0 implies that C̄ is a representative of C . Therefore the claim is proven. ■

The above result allows us to conclude that any cluster C of a graphon W has a repre-

sentative C such that φ(φ−1(C)) = C, as the following key lemma shows.

Lemma 3.3. Let W be a graphon and φ a measure preserving transformation. Suppose C

is a cluster of W . Then there exists a representative C of C such that φ(φ−1(C)) = C.

Proof. In the following, let C̄ be a representative of C which does not separate twins; the

existence of such a representative follows from Lemma 3.2.

φ−1(C̄) does not separate twins in Wφ, and so by Lemma 3.1, µ(φ(φ−1(C̄))) = µ(C̄).

But C̄ ⊃ φ(φ−1(C̄)), such that C̄ △ φ(φ−1(C̄)) = 0. Hence φ(φ−1(C̄)) is a represen-

tative of the cluster C . Furthermore, φ−1(φ(φ−1(C̄))) = φ−1(C̄), such that, defining

C = φ(φ−1(C̄)), we have φ(φ−1(C)) = C, as claimed. ■
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Connectedness under measure-preserving transformations.

In order to prove that the clusters of weakly-isomorphic graphons are related in the natural

way, we must analyze how the connectedness of a set is affected by measure preserving

transformations. Recall that a set C is disconnected at level λ in a graphon W if there

exists a measurable set A ⊂ C such that µ(A) > 0 and W < λ almost everywhere on

A× (C \A). As such, proving that a set C is disconnected amounts to finding a separating

set A.

We would like to say that if a set C is disconnected in W , then the corresponding set

C ′ is disconnected in a weakly-isomorphic graphon W ′. To do so, we will show that if A

is a separating set for C in W , then the corresponding set A′ is a separating set of C ′ in

W ′. As before, we will prefer to work with sets which do not separate twins. The following

claim shows that if C is a disconnected set that does not separate twins, we can always find

a separating set A which also does not separate twins.

Claim 3.7. Let W be a graphon and suppose that C is a set of positive measure that

does not separate twins. If C is disconnected at level λ in W , then either W < λ almost

everywhere on C × C, or there exists a set Ā ⊂ C such that Ā does not separate twins,

0 < µ(Ā) < µ(C), and W < λ almost everywhere on Ā× (C \ Ā).

Proof. Since C is disconnected at level λ, there exists a subset S ⊂ C such that 0 < µ(S) <

µ(C) and W < λ almost everywhere on S × (C \ S). Define

Ŝ = {x ∈ S :W (x, y) < λ for almost every y ∈ C \ S}.

Since W < λ almost everywhere on S × (C \ S), it must be that µ(Ŝ) = µ(S); This is an

application of Fubini’s theorem. Let S̄ = ψ−1
W (ψW (Ŝ)). It follows that S̄ ⊂ C, and for every

x ∈ S̄, W (x, y) < λ for almost every y ∈ C \ S. Furthermore, S̄ does not separate twins,

and S̄ contains Ŝ – which is S, less a null set – so µ(S \ S̄) = 0.
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There are two cases: µ(S̄) < µ(C), or µ(S̄) = µ(C). Suppose the first case holds. Then,

since µ((C \ S) \ (C \ S̄)) = 0, we have that for every x ∈ S̄, W (x, y) < λ for almost every

y ∈ C \ S̄. Therefore, W < λ almost everywhere on S̄ × (C \ S̄). This proves the claim for

the first case, as we may take Ā = S̄.

Now suppose µ(S̄) = C, which is to say that S̄ differs from C by a null set. Since W < λ

almost everywhere on S̄× (C \S), it follows that W < λ almost everywhere on C× (C \S).

By symmetry of W , we have W < λ almost everywhere on (C \ S) × C. This means that

W < λ almost everywhere on (C × C) \ (S × S).

Let T = C \ S. Then W < λ almost everywhere on T × C = (C \ S)× C. Define

T̂ = {x ∈ T :W (x, y) < λ for almost every y ∈ C }.

Let T̄ = ψ−1
W (ψW (T̂ )). Then, by a similar argument used above for S̄, µ(T \ T̄ ) = 0, T̄ does

not separate twins, and W < λ almost everywhere on T̄ × C.

There are two subcases: First, it may be that µ(T̄ ) = µ(C). If so, then W < λ almost

everywhere on C × C, which proves the claim. Second, it may be that µ(T̄ ) < µ(C). In

this case, we have W < λ almost everywhere on T̄ × (C \ T̄ ), and so taking Ā = T̄ proves

the claim. ■

We may now prove the key lemmas to Theorem 3.1. Together, these show that if C

is a cluster of a graphon W at level λ, then its corresponding set in a weakly-isomorphic

graphon is connected at every level λ′ < λ, and is therefore part of some cluster at level λ.

Lemma 3.4. Let W be a graphon and φ a measure preserving transformation. If C is a

cluster at level λ in W , then φ−1(C ) is connected at every level λ′ < λ in Wφ.

Proof. For simplicity, we will work with an representative C of the cluster C . As Lemma 3.3

shows, we may take C to be a representative such that φ(φ−1(C)) = C.

Suppose for a contradiction that φ−1(C) is disconnected in Wφ at some level λ′ < λ.

Then by Claim 3.7 either Wφ < λ′ almost everywhere on φ−1(C)×φ−1(C), or there exists

61



a set Ā ⊂ φ−1(C) such that 0 < µ(Ā) < µ(φ−1(C)), Wφ < λ′ almost everywhere on

Ā× (φ−1(C) \ Ā), and Ā does not separate twins.

In the first case, Wφ < λ′ almost everywhere on φ−1(C)×φ−1(C) implies that W < λ′

almost everywhere on C × C, which contradicts the fact that C is the representative of a

cluster at level λ′ in W .

Suppose the second case, then, where Wφ < λ′ almost everywhere on Ā× (φ−1(C) \ Ā).

Then W < λ′ almost everywhere on φ(Ā)×φ(φ−1(C) \ Ā). We now claim that φ(φ−1(C) \

Ā) = φ(φ−1(C)) \φ(Ā) = C \ Ā. To see this, note that φ(φ−1(C) \ Ā) ⊃ φ−1(φ(C)) \φ(Ā).

However, we have chosen C to be a representative such that φ(φ−1(C)) = C, and so we

obtain

φ(φ−1(C) \ Ā) ⊃ C \ Ā.

On the other hand, suppose y ∈ φ(φ−1(C) \ Ā). This means that there is some x ∈

φ−1(C)\ Ā such that φ(x) = y. But φ−1(C)\ Ā does not separate twins, so there cannot be

an x′ ∈ Ā such that φ(x′) = φ(x) = y. Therefore, y ∈ φ(φ−1(C)\Ā) if y ∈ C and there is no

a ∈ Ā such that φ(a) = y. That is, φ(φ−1(C)\Ā) ⊂ C\Ā. Hence φ(φ−1(C)\Ā) = C\φ(Ā).

ThereforeW < λ almost everywhere on φ(Ā)×(C\φ(Ā)). Since µ(φ(Ā)) = µ(Ā) < µ(C)

by Lemma 3.1, this implies that C is disconnected at level λ′ in W . Hence C is not the

representative of a cluster at level λ, and so we have derived a contradiction.

Both cases lead to contradictions, and so it must be that φ−1(C) is connected in Wφ at

every level λ′ < λ. ■

Lemma 3.5. Let W be a graphon and φ be a measure preserving transformation. Suppose

C is a cluster of Wφ at level λ. Let C ∈ FamW C . Then φ(C) is connected at every level

λ′ < λ in W .

Proof. Suppose for a contradiction that φ(C) is not connected at some level λ′ < λ in

W . Then there exists a set S ⊂ φ(C) such that 0 < µ(S) < µ(φ(C)) and W < λ′

almost everywhere on S × (φ(C) \ S). Hence Wφ < λ′ almost everywhere on φ−1(S) ×
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φ−1(φ(C) \ S) = φ−1(S) × (φ−1(φ(C)) \ φ−1(S)). Since C does not separate twins in

Wφ, we have by Lemma 3.1 that φ−1(φ(C)) = C, and so Wφ < λ′ almost everywhere on

φ−1(S)× (C \ φ−1(S)).

Consider φ−1(S). We have C = φ−1(φ(C)), and since S ⊂ φ(C), it follows that

φ−1(S) ⊂ C. Moreover, µ(φ−1(S)) = µ(S), since φ is measure preserving, and 0 < µ(S) <

µ(φ(C)) = µ(C), where the last equality comes from Lemma 3.1. Hence C is disconnected

at level λ′ in W . This contradicts the fact that C is a representative of a cluster at level λ

in W . Hence it must be that φ(C) is connected at every level λ′ < λ in W . ■

Proof of Theorem 3.1.

The two previous claims are sufficient to prove the main result of this section, restated

below:

Theorem 3.1. Let W be a graphon and φ a measure preserving transformation. Then C

is a cluster of Wφ at level λ if and only if there exists a cluster C ′ of W at level λ such

that C = φ−1(C ′).

Proof. Suppose C is a cluster of W at level λ and let C be a representative of C . Then

according to Lemma 3.4, φ−1(C) is connected at every level λ′ < λ in Wφ. Hence, by the

definition of a graphon cluster, there exists a cluster C ′ at level λ in Wφ which contains

φ−1(C). Then by Lemma 3.5, there is a representative C ′ of C ′ such that C ′ does not

separate twins and φ(C ′) is connected at every level λ′ < λ in W . Hence there is a cluster

C ′′ of W at level λ such that C ′′ contains φ(C ′). However, it must be that C ′′ = C .

To see this, note that we have φ−1(C ∩ φ(C ′)) = φ−1(C) ∩ φ−1(φ(C ′)) = φ−1(C) ∩ C ′,

where we used Lemma 3.1 in replacing φ−1(φ(C ′)) with C ′. Since φ is measure preserving,

it follows that µ(C ∩ φ(C ′)) = µ(φ−1(C) ∩ C ′), but C ′ △ φ−1(C) is a null set and so

µ(C ∩ φ(C ′)) = µ(C). Thus µ(C ′) = µ(φ−1(C)), and so φ−1(C) is a representative of the

cluster C ′. Hence φ−1(C ) is a cluster at level λ of Wφ.
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Now suppose C is a cluster of Wφ at level λ and let C be a representative of C such

that C ∈ FamW (C ). Then according to Lemma 3.5, φ(C) is connected at every level λ′ < λ

in W , and hence there exists a cluster C ′ in W at level λ which contains φ(C). By the

previous argument, φ−1(C ′) is a cluster of Wφ at level λ. Since C ∈ FamW C , C does not

separate twins in Wφ, and so φ−1(φ(C)) = C, and thus C is contained in φ−1(C ′). Since

C is a cluster representative, and thus maximal, it must be that φ−1(C ′) = C . ■

3.6 Mergeons

The set of all clusters of a graphon at any level has hierarchical structure in the sense that

given any pair of distinct clusters C1 and C2, either one is “essentially” contained within

the other, i.e., C1 ⊂ C2, or C2 ⊂ C1, or they are “essentially” disjoint, i.e., µ(C1 ∩ C2) = 0,

as is proven by Claim 3.2 on page 49. Because of this hierarchical structure, we call the set

CW of all clusters from any level of the graphon W the graphon cluster tree of W . It is this

tree that we hope to recover by applying a graph clustering algorithm to a graph sampled

from W .

We may naturally speak of the height at which pairs of distinct clusters merge in the

cluster tree. For instance, let C1 and C2 be distinct clusters of CW . We say that the

merge height of C1 and C2 is the level λ at which they are joined into a single cluster, i.e.,

max{λ : C1 ∪C2 ∈ CW (λ)}. However, while the merge height of clusters is well-defined, the

merge height of individual points is not. This is because the cluster tree is not a collection

of sets, but rather a collection of equivalence classes of sets, and so a point does not belong

to any one cluster more than any other. Note that this is distinct from the classical density

case considered in Hartigan (1981), Chaudhuri and Dasgupta (2010), Abbe et al. (2015),

and the previous chapter, where the merge height of any pair of points is well-defined.

Nevertheless, consider a measurable function M : [0, 1]2 → [0, 1] which assigns a merge

height to every pair of points. While the value of M on any given pair is arbitrary, the
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(a) Cluster tree CW of
W .

{{ {

(b) Mergeon M of CW .

Figure 3.6: A graphon cluster tree and its mergeon.

value of M on sets of positive measure is constrained. Intuitively, if C is a cluster at level

λ, then we must have M ≥ λ almost everywhere on C × C . If M satisfies this constraint

for every cluster C we call M a mergeon for CW , as it is a graphon which determines a

particular choice for the merge heights of every pair of points in [0, 1]. More formally:

Definition 3.7 (Mergeon). A mergeon of a cluster tree C is a graphon M such that for all

λ ∈ [0, 1],

M−1[λ, 1] △
∪

C∈CW (λ)

ρ(C )× ρ(C )

is a null set, where M−1[λ, 1] = {(x, y) : M(x, y) ≥ λ}, △ is the symmetric difference

operator, and ρ is an arbitrary section map2. Equivalently, a mergeon of C is a graphon M

such that for all λ ∈ [0, 1],

[M−1[λ, 1]]∅ =
∪

C∈CW (λ)

C × C ,

where [M−1[λ, 1]]∅ is the equivalence class of measurable subsets of [0, 1]× [0, 1] modulo null

sets which contains M−1[λ, 1].

2Recall from Section 3.3 that a section map ρ is a function which returns an element of an equivalence
class. Since a cluster C is an equivalence class of measurable sets modulo null sets, ρ(C ) is a measurable
subset of [0, 1].
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An example of a mergeon and the cluster tree it represents is shown in Figure 3.6. In

fact, the cluster tree depicted is that of the graphon W from Figure 3.2a. The mergeon

encodes the height at which clusters A , B, and C merge. In particular, the fact that

M = λ2 everywhere on A ×B represents the merging of A and B at level λ2 in W .

3.6.1 Properties

It is clear that in general there is no unique mergeon representing a graphon cluster tree,

however, the above definition implies that two mergeons representing the same cluster tree

are equal almost everywhere. As such there is a unique equivalence class of mergeons

corresponding to a graphon cluster tree.

Moreover, as the mergeon itself is a graphon, it has a corresponding cluster tree. The

cluster tree of the mergeon satisfies the following property:

Theorem 3.2. Let C be a cluster tree, and suppose M is a mergeon representing C. Then

C ∈ C(λ) if and only if C is a cluster in M at level λ. In other words, the cluster tree CM

of M is exactly C.

To prove this theorem, we need the following technical results:

Lemma 3.6. Let W be a graphon and suppose M is a mergeon of W . Suppose A is

connected at level λ in M . Then A is contained in some cluster C in W at level λ.

Proof. First, it must be the case that µ (A \
∪
CW (λ)) = 0. Suppose not. Let R = A \∪

CW (λ). Since A is connected, it follows that there is a subset Q ⊂ R× (A \R) of positive

measure such that M ≥ λ on Q. We then have that

Q ∩M−1[λ, 1] = Q ∩
∪

C∈CW (λ)

C × C

is not null. Since CW (λ) is a countable set, it follows that there must be a cluster C ∈

CW (λ) such that Q ∩ (C × C) is not null. But Q ⊂ R × (A \ R), so this implies that
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(R× (A \R)) ∩ (C × C) is not null. We have the identity:

(R× (A \R)) ∩ (C × C) = (R ∩ C)× ((A \R) ∩ C),

which then implies that (R∩C)× ((A\R)∩C) is not null. However, this is a contradiction,

since R ∩ C is necessarily a set of measure zero by the definition of R. Hence it must be

that all of A excluding a null set is contained within
∪
CW (λ).

Let Â = A ∩
∪
CW (λ). Then Â is equivalent to A in that it differs only by a set of

measure zero, however, it is contained entirely within
∪
CW (λ). Since Â is a set of positive

measure, there must exist a Ĉ ∈ CW (λ) such that µ(Â ∩ Ĉ) > 0. We will show that

µ(Â \ Ĉ) = 0.

Let S = Â∩ Ĉ, and let T = Â \S. Note that T ∩ Ĉ is null. Suppose for a contradiction

that T is not null. Since T is contained within
∪
CW (λ), we may decompose it as the union

T =
∪

C∈CW (λ)

T ∩ C

hence we have

S × T =
∪

C∈CW (λ)

S × (T ∩ C)

=
∪

C∈CW (λ)

(Â ∩ Ĉ)× (T ∩ C)

=
∪

C∈CW (λ)

(Â× T ) ∩ (Ĉ × C).

But M < λ almost everywhere on Ĉ × C whenever C and Ĉ, are disjoint clusters. Hence

M−1[λ, 1] ∩ (S × T ) is equal, up to a null set, to the set M−1[λ, 1] ∩ (Â × T ) ∩ (Ĉ × Ĉ).

Using the identity once again, this is the set M−1[λ, 1] ∩
[
(Â ∩ Ĉ)× (Ĉ ∩ T )

]
. But Ĉ ∩ T

is null, so that this set is null. This is a contradiction, as it implies that M < λ almost
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everywhere on S × T , but S ∪ T = Â is connected at level λ. Therefore it must be that T

is null, and hence µ(Â \ Ĉ) = 0. This implies that µ(A \ Ĉ) = 0, and so A is contained in

some cluster of W at level λ, namely C. ■

Lemma 3.7. Suppose a set A of positive measure is contained in a cluster at every level

λ′ < λ. Then A is contained in a cluster at level λ.

Proof. We may construct a sequence C1, C2, . . . of clusters such that Ci is a cluster at level

λ − 1/n, and Ci contains A. Then the intersection C =
∩∞

i=1Ci is connected at all levels

λ′ < λ, as otherwise there would exist a λ∗ < λ at which C is disconnected, but this would

imply that Ci is disconnected for any i such that λ−1/i > λ∗. Furthermore, C has positive

measure, since the measure of every Ci is at least µ(A). Therefore, C is contained in some

cluster at level λ, and C contains A. Hence A is in some cluster at level λ. ■

With these results, we are now able to prove Theorem 3.2:

Proof of Theorem 3.2. Let C be an arbitrary representative of the cluster C . By definition

of the mergeon, all but a null set of C × C is contained within M−1[λ, 1], and therefore

M ≥ λ almost everywhere on C × C. This implies that C is connected at level λ in M ,

which in turn implies that C is contained in some cluster C ′ of M at level λ. By definition,

C ′ is connected in M at every level λ′ < λ, and so Lemma 3.6 implies that C ′ is contained

in some cluster of W at every level λ′ < λ. Lemma 3.7 then implies that C ′ is contained in

some cluster of W at level λ. In other words, C is a cluster of W at level λ, and C ⊂ C ′,

so the fact that C ′ is contained in a cluster of W at level λ implies that C ′ differs from C

by at most a null set. Hence C is a cluster of M .

Now suppose C is a cluster of M at level λ. Then C is connected in M at every level

λ′ < λ, and so Lemma 3.6 implies that C is contained in some cluster of W at every level

λ′ < λ. Lemma 3.7 then implies that C is contained in some cluster of W at level λ. Let C ′

be this cluster. Then the above implies that C ′ is a cluster at level λ in M . But C ⊂ C ′,
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and C is a cluster of M , so it must be that C and C ′ differ by a null set, and hence C is a

cluster of W . ■

Additionally, we show that the mergeon transforms naturally under measure preserving

transformations:

Theorem 3.3. Let W be a graphon and M a mergeon of the cluster tree of W . If φ is a

measure preserving transformation, then Mφ is a mergeon of the cluster tree of Wφ.

Proof. One one hand, the function defined by

M−1
0 [λ, 1] =

∪
C∈CW (λ)

φ−1(C)× φ−1(C)

is a mergeon of Wφ, since C is a cluster of W if and only if φ−1(C) is a cluster of Wφ by

Theorem 3.1 on page 53. Now consider the pullback Mφ and its upper level set

(Mφ)−1[λ, 1] = {(x, y) :Mφ(x, y) ≥ λ}

= {(x, y) :M(φ(x), φ(y)) ≥ λ},

which, by definition of the mergeon, is

=

(x, y) : (φ(x), φ(y)) ∈
∪

C∈CW (λ)

C × C

 .

It is well-known that if φ is a measure preserving map, then the transformation defined by

Φ : (x, y) 7→ (φ(x), φ(y)) is also measure preserving and measurable. Therefore we have

= Φ−1

 ∪
C∈CW (λ)

C × C

 .
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Since preimages commute with arbitrary unions:

=
∪

C∈CW (λ)

Φ−1(C × C)

Some thought will show that Ψ−1(C × C) = φ−1(C)× φ−1(C), such that:

=
∪

C∈CW (λ)

φ−1(C)× φ−1(C)

Comparing this to the definition of M0 above, which was a mergeon of Wφ, we see that Mφ

is a mergeon of Wφ. ■

3.6.2 Strict cluster trees and mergeons

A graphon cluster tree is a hierarchical collection of equivalence classes of sets. It is some-

times useful to instead to work with a hierarchical collection of subsets of [0, 1]. We may

always do so by choosing a section map ρ and applying it to every cluster in the cluster

tree. Though the choice of representative of a given cluster is arbitrary, it will sometimes

be useful to choose it in such a way that the cluster tree has strictly nested structure, as

made precise in the following definition.

Definition 3.8 (Strict section). Let C be a cluster tree. A strict section ρ̃ : C → Σ is a

function which selects a unique representative from each cluster C such that if:

1. µ(C ∩ C ′) = 0⇒ ρ̃(C ) ∩ ρ̃(C ) = ∅,

2. C ⊂ C ′ ⇒ ρ̃(C ) ⊂ ρ̃(C ′), and

3. (Technical condition) ρ̃(C ) =
∩
{ρ̃(C ′) : C ′ ⊃ C }.

The strict cluster tree C̃ is defined by C̃(λ) = { ρ̃(C ) : C ∈ C(λ)}.

The following result shows that a strict section function always exists:
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Theorem 3.4. Let C be a cluster tree. There exists a section function ρ̃ on C such that if

1. µ(C ∩ C ′) = 0⇒ ρ̃(C ) ∩ ρ̃(C ) = ∅,

2. C ⊂ C ′ ⇒ ρ̃(C ) ⊂ ρ̃(C ′), and

3. (Technical condition) ρ̃(C ) =
∩
{ρ̃(C ′) : C ′ ⊃ C }.

Proof. We construct such a section function on the clusters at rational levels and extend it

to [0, 1]. Let Q[0,1] = Q ∩ [0, 1]. Define

Ĉ = {C ∈ C(λ) : λ ∈ Q[0,1]}

that is, Ĉ is the set of all clusters from every rational level. Note that this is a countable

collection. For any cluster C ∈ Ĉ, define PC to be the set of clusters in Ĉ which have null

intersection with C . That is:

PC = {C ′ ∈ Ĉ : µ(C ∩ C ′) = 0}.

Let ρ0 be an arbitrary section function, and define the section function ρ1 : Ĉ → Σ as

follows:

ρ1(C ) = ρ0(C ) \
∪
PC .

Furthermore, let C0 be the equivalence class of sets differing from [0, 1] by a null set, and

define ρ1(C0) = [0, 1]; This will ensure that all pairs of points have a well-defined merge

height. The intersection of ρ0(C ) and
∪
PC is null, by definition of PC and the fact that it is

a countable set. Therefore, ρ1(C )△ρ0(C ) is null, and ρ1(C ) is hence a valid representative

of C . Furthermore, for any C ,C ′ ∈ Ĉ such that µ(C ∩C ′) = 0, we have ρ1(C )∩ρ2(C ′) = ∅.
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We now define the section function on all levels in [0, 1]. For a cluster C at any level,

define its set of ancestors in Ĉ to be

AC = {C ′ ∈ Ĉ : µ(C ′ \ C ) = 0}.

Then define

ρ̃(C ) =
∩

C ′∈AC

ρ1(C
′)

Hence ρ̃ trivially satisfies the third condition of the claim.

We must argue that ρ̃(C ) is a valid representative of C . First, suppose that C is a

cluster at level λ. Then AC contains a cluster from every rational level below λ, and ρ̃(C ) is

contained in a representative of each of them. It follows that ρ̃(C ) is contained in a cluster

representative at every level λ′ < λ. Hence, by Lemma 3.7, ρ̃(C ) is contained in a cluster

representative at level λ. But C is essentially contained in all of its ancestors. Therefore,

it must be that ρ̃(C )△ C is null and so ρ̃(C ) is a valid representative of C .

Now we show that ρ̃ has the desired properties. Suppose C and C ′ have null intersection,

and without loss of generality, assume that they are clusters at the same level λ. Let λ′ < λ

be the maximal level at which their intersection is not null. Then there is some rational

level λ̃ between λ′ and λ. Hence ρ̃(C ) is strictly contained in the representative ρ1(C̃ ) of

some cluster C̃ at level λ̃, and similarly, ρ̃(C ) is strictly contained in ρ1(C̃ ′) at the same

level. Necessarily, C̃ and C̃ ′ have null intersection, and so ρ1(C̃ ) and ρ1(C̃ ′) are strictly

disjoint. Therefore, so also are ρ̃(C ) and ρ̃(C ′).

Furthermore, suppose that C and C ′ are such that µ(C ′ \C ) = 0. Suppose without loss

of generality that λ > λ′ (if λ = λ′ then ρ̃(C ) = ρ̃(C ′)). Then the ancestors of C include the

ancestors of C ′, and so the intersection of the ancestors of C is a subset of the intersection

of the ancestors of C ′. This proves that ρ̃(C ) ⊂ ρ̃(C ′). ■
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Furthermore, given a cluster tree and a strict section, there is a unique mergeon repre-

senting the strict cluster tree, defined as follows:

Definition 3.9 (Strict mergeon). Let C be a cluster tree, and suppose ρ̃ is a strict section

for the clusters of C. Then M is a strict mergeon of the strict cluster tree induced by ρ̃ if,

for every λ ∈ [0, 1],

M−1[λ, 1] =
∪

C∈CW (λ)

ρ̃(C )× ρ̃(C ).

Because any two mergeons of the same cluster tree differ only on a null set, we are

typically free to assume that a mergeon is strict without much loss. Making this assumption

will simplify some statements and proofs.

3.7 Notions of consistency

We have so far defined the sense in which a graphon has hierarchical cluster structure

and identified the mergeon as an object which encodes this hierarchy. We now turn to the

problem of determining whether a clustering algorithm is able to recover this structure when

applied to a graph sampled from a graphon. Our approach is to define a distance between

the infinite graphon cluster tree and a finite clustering. We will then define consistency by

requiring that a consistent method converge to the graphon cluster tree in this distance for

all inputs minus a set of vanishing probability.

3.7.1 Merge distortion revisited

Recall from Definition 1.2 in Section 1.1 that a hierarchical clustering C of a set S – or,

from now on, just a clustering of S – is a collection of non-empty subsets of S such that

S ∈ C and for all C,C ′ ∈ C, either C ⊂ C ′, C ′ ⊂ C, or C ∩C ′ = ∅. Suppose C is a clustering

of a finite set S consisting of graphon nodes; i.e, S ⊂ [0, 1]. How might we measure the

distance between this clustering and a graphon cluster tree C? Intuitively, the two trees
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are close if every pair of points in S merges in C at about the same level as they merge in

C. But this informal description faces two problems: First, C is a collection of equivalence

classes of sets, and so the height at which any pair of points merges in C is not defined.

Recall, however, that the cluster tree has an alternative representation as a mergeon. A

mergeon does define a merge height for every pair of nodes in a graphon, and thus provides

a solution to this first issue. Second, the clustering C is not equipped with a height function,

and so the height at which any pair of points merges in C is also undefined. Following the

previous chapter, our approach is to induce a merge height function on the clustering using

the mergeon in the following way:

Definition 3.10 (Induced merge height). Let M be a mergeon, and suppose S is a finite

subset of [0, 1]. Let C be a clustering of S. The merge height function on C induced by M is

defined by M̂C(s, s
′) = minu,v∈C(s,s′)M(u, v), for every s, s′ ∈ S × S, where C(s, s′) denotes

the smallest cluster C ∈ C which contains both s and s′.

We measure the distance between a clustering C and the cluster tree C using the merge

distortion:

Definition 3.11. Let M be a mergeon, S a finite subset of [0, 1], and C a clustering of S.

The merge distortion is defined by dS(M, M̂C) = maxs,s′∈S, s ̸=s′ |M(s, s′)− M̂C(s, s
′)|.

Defining the induced merge height and merge distortion in this way leads to an especially

meaningful interpretation. In particular, if the merge distortion between C and C is ϵ, then

any two clusters of C which are separated at level λ but merge below level λ−ϵ are correctly

separated in the clustering C. A similar result guarantees that a cluster in C is connected

in C at within ϵ of the correct level. The following makes this precise:

Claim 3.8. Let C be cluster tree, and let C̃ be a strict cluster tree obtained by applying

a strict section ρ̃ to each cluster of C as described in Section 3.6.2. Let M be the strict

mergeon representing C̃. Let S = (x1, . . . , xn) with each xi ∈ [0, 1] and suppose C is a

clustering of S. Let M̂ be the induced merge height on C. If dS(M, M̂) < ϵ, we then have:
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1. Connectedness: If C is a cluster of C̃ at level λ and |S ∩ C| ≥ 2, then the smallest

cluster in C which contains all of S ∩ C is contained within C ′ ∩ S, where C ′ is the

cluster of C̃ at level λ′ = λ− ϵ which contains C.

2. Separation: If C1 and C2 are two clusters of C̃ at level λ such that C1 and C2 merge

at level λ′ < λ− ϵ, then if |C1 ∩ S|, |C2 ∩ S| ≥ 2, the smallest cluster in C containing

C1 ∩ S and the smallest cluster containing C2 ∩ S are disjoint.

Proof. First we prove connectedness. Let Ĉ be the smallest cluster in C̃ containing C ∩ S.

Suppose Ĉ contains a point y from outside of C ′. Let x, x′ be any two distinct points in

C ∩ S. Then necessarily M(x, y) < λ′ = λ − ϵ, as, since M is strict, M(x, y) ≥ λ if and

only if x, y are in the same cluster of C̃ at level λ. Hence the merge distortion is at least

M(x, x′)−M(x, y) > ϵ, which is a contradiction.

Separation follows from connectedness. Let Ĉ1 be the smallest cluster in the clustering

containing C1 ∩ S, and similarly for Ĉ2. Let C̃1 and C̃2 be the clusters at level λ− ϵ which

contain C1 and C2. Then C̃1 ∩ C̃2 = ∅, since C1 and C2 merge below λ − ϵ. Furthermore,

by connectedness, C1 ∩ S ⊂ C̃1 and C2 ∩ S ⊂ C̃2. Hence they are disjoint. ■

3.7.2 The label measure

We will use the merge distortion to measure the distance between C, a hierarchical clus-

tering of a graph, and C, the graphon cluster tree. Recall, however, that the nodes of a

graph sampled from a graphon have integer labels. That is, C is a clustering

of [n], and not of a subset of [0, 1]. Hence, in order to apply the merge

distortion, we must first relabel the nodes of the graph, placing them in

direct correspondence to nodes of the graphon, i.e., points in [0, 1].

Recall that we sample a graph of size n from a graphon W by first

drawing n points x1, . . . ,xn uniformly at random from the unit interval.

We then generate a graph on node set [n] by connecting nodes i and j
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with probability W (xi,xj). However, the nodes of the sampled graph are not labeled by

x1, . . . ,xn, but rather by the integers 1, . . . , n. Thus we may think of xi as being the “true”

latent label of node i. In general the latent node labeling is not recoverable from data,

as is demonstrated by the figure to the right. We might suppose that the graph shown is

sampled from the graphon above it, and that node 1 corresponds to a, node 2 to b, node

3 to c, and node 4 to d. However, it is just as likely that node 4 corresponds to d′, and so

neither labeling is more “correct”. It is clear, though, that some labelings are less likely than

others. For instance, the existence of the edge (1, 2) makes it impossible that 1 corresponds

to a and 2 to c, since W (a, c) is zero.

Therefore, given a graph G = ([n], E) sampled from a graphon, there are many possible

relabelings of G which place its nodes in correspondence with nodes of the graphon, but

some are more likely than others. The merge distortion depends which labeling of G we

assume, but, intuitively, a good clustering of G will have small distortion with respect to

highly probable labelings, and only have large distortion on improbable labelings. Our

approach is to assign a probability to every pair (G,S) of a graph and possible labeling.

We will thus be able to measure the probability mass of the set of pairs for which a method

performs poorly, i.e., results in a large merge distortion.

More formally, let Gn denote the set of all undirected, unweighted graphs on node set

[n], and let Σn be the sigma-algebra of Lebesgue-measurable subsets of [0, 1]n. A graphon

W induces a unique product measure ΛW,n defined on the product sigma-algebra 2Gn ×Σn

such that for all G ∈ 2Gn and S ∈ Σn:

ΛW,n(G × S) =
∑
G∈G

(∫
S
LW (S|G) dS

)
,

where

LW (S | G) =
∏

(i,j)∈E(G)

W (xi, xj)
∏

(i,j)̸∈E(G)

[1−W (xi, xj)] ,
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and E(G) represents the edge set of the graph G. We recognize LW (S | G) as the integrand

in Equation (3.1) for the probability of a graph as determined by a graphon. If G is fixed,

integrating LW (S | G) over all S ∈ [0, 1]n gives the probability of G under the model defined

by W .

We now formally state our notion of consistency. A hierarchical graph clustering method

f is a map from the set Gn of all unweighted, undirected graphs on node set [n] to the

set of hierarchical clusterings of [n]. If C is a clustering of [n] and S = (x1, . . . , xn), write

C ◦ S to denote the relabeling of C by S, in which i is replaced by xi in every cluster. Then

f(G) ◦ S is a hierarchical clustering of S, and M̂f(G)◦S denotes the merge function induced

on f(G) ◦ S by M in the manner of Definition 3.10.

Definition 3.12 (Consistency). Let W be a graphon and M be a mergeon of W . A

hierarchical graph clustering method f is said to be a consistent estimator of the graphon

cluster tree of W if for any fixed ϵ > 0, as n→∞,

ΛW,n

({
(G,S) : dS(M, M̂f(G)◦S) > ϵ

})
→ 0.

The choice of mergeon for the graphon W does not affect consistency, as any two mer-

geons of the same graphon differ on a set of measure zero. Furthermore, consistency is with

respect to the random graph model, and not to any particular graphon representing the

model. The following theorem makes this precise.

Theorem 3.5. Let W be a graphon and φ a measure preserving transformation. A clus-

tering method f is a consistent estimator of the graphon cluster tree of W if and only if it

is a consistent estimator of the graphon cluster tree of Wφ.

Proof. Let M be a mergeon of the cluster tree of W and fix any ϵ > 0. Consider the set

F =
{
(G,S) : dS

(
M, M̂f(G)◦S

)
> ϵ
}
,
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which is the set of graph/sample pairs for which the merge distortion between the clustering

and the mergeon M is greater than ϵ. Consistency with respect to the cluster tree of W

requires that ΛW,n(F )→ 0 as n→∞. Now recall that Mφ is a mergeon of the cluster tree

of Wφ, and consider

Fφ =
{
(G,S) : dS

(
Mφ, M̂φ

f(G)◦S

)
> ϵ
}

where M̂φ
f(G)◦S is the merge height induced on the clustering f(G)◦S by the mergeon Mφ.

Fφ is the set of graph/sample pairs for which the merge distortion between the clustering

and the mergeon Mφ is greater than ϵ. Consistency with respect to the cluster tree of

Wφ requires that ΛWφ,n(Fφ) → 0 as n → ∞. It will therefore be sufficient to show that

ΛW,n(F ) = ΛWφ,n(Fφ) to prove the claim.

Now we compute the measure under ΛWφ,n of Fφ:

ΛWφ,n(Fφ) =
∑
G∈Gn

∫
Fφ(G)

LWφ(S | G) dS,

where Fφ(G) denotes the section of Fφ by graph G, that is, the set Fφ(G) = {S : (G,S) ∈

Fφ}. It is easy to see that LWφ(S | G) = LW (φ(S), G), such that:

ΛWφ,n(Fφ) =
∑
G∈Gn

∫
Fφ(G)

LW (φ(S) | G) dS,

Since Mφ(x, y) =M(φ(x), φ(y)), we have

dS

(
Mφ, M̂φ

f(G)◦S

)
= dφ(S)

(
M, M̂f(G)◦φ(S)

)

such that

Fφ =
{
(G,S) : dφ(S)

(
M, M̂f(G)◦φ(S)

)
> ϵ
}
.
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Now consider the section of F by G, defined by F (G) = {S : (G,S) ∈ F}. It is clear that

Fφ(G) = φ−1(F (G)) for every graph G. Therefore,

ΛWφ,n(Fφ) =
∑
G∈Gn

∫
φ−1(F (G))

LW (φ(S) | G) dS.

Now, it is a property of measure preserving maps that
∫
φ−1(A) f(φ(x)) dµ(x) =

∫
A f(x) dµ(x);

See, for example, (Ash and Doleans-Dade, 2000). Therefore, we have

ΛWφ,n(Fφ) =
∑
G∈Gn

∫
φ−1(F (G))

LW (φ(S) | G) dS

=
∑
G∈Gn

∫
F (G)

LW (S | G) dS

= ΛW,n(F )

which proves the claim. ■

3.7.3 Consistency and the blockmodel

If a graph clustering method is consistent in the sense defined above, it is also consistent

in the stochastic blockmodel; i.e., it ensures strict recovery of the communities with high

probability as the size of the graphs grow large. For instance, suppose W is a stochastic

blockmodel graphon with α along the block-diagonal and β everywhere else. W has two

clusters at level α, merging into one cluster at level β. When the merge distortion between

the graphon cluster tree and a clustering is less than α − β, which will eventually be the

case with high probability if the method is consistent, the two clusters are totally disjoint

in C; this implication is made precise by Claim 3.8 on page 74.
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3.8 Sufficient conditions for consistency

Having made our notion of consistency rigorous, we now ask whether consistent graphon

clustering algorithms exist. In this section, we show that any method which is capable of

consistently estimating the probability of each edge in a random graph leads to a consistent

clustering algorithm; the next section will construct such an edge probability estimator.

3.8.1 The single-linkage clustering of edge probabilities

Our definition of a graphon cluster is motivated by interpreting the graphon function W

as the weight matrix of an infinite weighted graph. In the case of a finite weighted graph

H, we argued that a natural approach to defining a cluster is as a connected component

of an appropriately-defined subgraph. In particular, let Hλ be the subgraph induced by

removing all edges of weight less than λ from H. The clusters of H at level λ are defined

to be the connected components of Hλ. Our definition of a graphon cluster can be seen as

an extension of this notion to the setting of infinite weighted graphs.

In fact, the clusters of H are precisely those obtained by applying the familiar single-

linkage clustering algorithm, using the matrix of edge weights as a similarity matrix. In

this sense, the ideal clustering of a graphon, according to our definitions, is (informally-

speaking) the single-linkage clustering obtained by interpreting W (x, x′) as a measure of

the similarity between x and x′.

In clustering we are given an unweighted, unlabeled graph sampled from a graphon;

our goal is to recover the graphon cluster tree. Each possible edge in this sampled graph

is the result of a Bernoulli trial with a success probability that is latent. It is possible,

however, to estimate this latent probability. Doing so for every pair of nodes results in a

finite weighted graph in which the weight of each edge is an estimate of the edge’s latent

probability. Following the above discussion, the single-linkage clustering of this graph is

quite natural. Intuitively, the quality of this clustering depends upon the accuracy of the
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edge probability estimates. Furthermore, it is easy to see that changing the weight of a

single edge can drastically alter the single-linkage clustering. As a result, we feel that every

edge probability estimate must be accurate in order to guarantee that the single-linkage

clustering is close to the graphon cluster tree.

We now formalize this intuition into a sufficiency result. We will work exclusively

with graphons which are piecewise Lipschitz (or weakly isomorphic to a piecewise Lipschitz

graphon). We follow Zhang et al. (2015) in defining a piecewise-Lipschitz graphon as follows:

Definition 3.13 (Piecewise Lipschitz). We say that B = {B1, . . . , Bk} is a block partition

if each Bi is an open, half-open, or closed interval in [0, 1] with positive measure, Bi ∩ Bj

is empty whenever i ̸= j, and
∪
B = [0, 1]. We say that a graphon W is piecewise c-

Lipschitz if there exists a set of blocks B such that for any (x, y) and (x′, y′) in Bi × Bj ,

|W (x, y)−W (x′, y′)| ≤ c(|x− x′|+ |y − y′|).

Let S = (x1, . . . ,xn) be an ordered set of n uniform random variables drawn from the

unit interval. Fix a graphon W , and let P be the random matrix whose ij entry is given

by W (xi,xj). We say that P is the random edge probability matrix. Assuming that W has

structure, it is possible to estimate P from a single graph sampled from W . We say that an

estimator P̂ of P is consistent in max-norm3 if, for any ϵ > 0, limn→∞ P(maxi ̸=j |Pij−P̂ij | >

ϵ) = 0. The following theorem, whose proof comprises the remainder of the section, states

that any estimator which is consistent in this sense leads to a consistent clustering algorithm:

Theorem 3.6. Let W be a piecewise c-Lipschitz graphon. Let P̂ be a consistent estimator

of P in max-norm. Let f be the clustering method which performs single-linkage clustering

using P̂ as a similarity matrix. Then f is a consistent estimator of the graphon cluster tree

of W in the sense of merge distortion.
3Note that our definition ignores the diagonal, and is therefore a slight abuse of terminology.
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3.8.2 Proof

We begin our proof of Theorem 3.6 by adopting a deterministic setting in which the graphon

nodes are fixed; we will later reïntroduce randomness when proving the main theorem.

The merge estimate matrix.

Consider a graphon W and a fixed sampled S = (x1, . . . , xn) whose elements are points in

the unit interval. S induces a fixed edge probability matrix P whose entries are defined as

Pij = W (xi, xj). Let P̂ be an estimate of P . Let CP̂ be the clustering of [n] obtained by

applying the single-linkage algorithm to P̂ , interpreting it as a similarity matrix.

Our first observation is that P̂ being close to P does not imply that CP̂ is close to the

graphon cluster tree in the sense of merge distortion. This is because the sample S may

not be sufficient to capture the structure of the graphon. For instance, consider a graphon

which contains two large regions of high probability connected into a single cluster by a thin

bridge. If S does not contain a sample from the bridge, neither it nor the cluster it joins

can be detected. In this case, the single-linkage clustering of P̂ may be very different from

the structure of the underlying graphon, even though the estimate of each edge between

the observed samples may be highly accurate.

We therefore work not with the edge probability estimates directly, but with a matrix

of merge estimates, defined as follows. Let H be the finite weighted graph on [n] in which

the weight between node i and j is given by P̂ij . Let Hλ be the finite subgraph induced

by removing any edge of weight less than λ from H. For any i, j ∈ [n], define the merge

estimate matrix Q by

Q̂ij = max{λ : i and j are connected in Hλ}.

We recognize Q̂ as the natural similarity matrix induced by the single-linkage clustering of

P̂ . It follows that the single-linkage clustering of Q̂, written CQ̂, is identical to CP̂ , i.e., the
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single-linkage clustering of P̂ .

As its name suggests, the merge estimate matrix can be interpreted as an estimate of

the mergeon. If Q̂ is close to M on the sample S, we can indeed show that the single-

linkage clustering of the data is close to the graphon cluster tree in merge distortion, as the

following lemma shows:

Lemma 3.8. Let W be a graphon, M be a mergeon of W , and S = (x1, . . . , xn). Suppose

maxi ̸=j |M(xi, xj) − Q̂ij | < ϵ, and let CQ̂ be the single-linkage clustering of the weighted

graph H with weight matrix Q̂. Let M̂ be the merge height on CQ̂ induced by M . Write dS

for the merge distortion w.r.t. the sample S. Then dS(M, M̂) < 2ϵ.

Proof. Take any arbitrary i ̸= j in the clustering CQ̂. Let C be the smallest cluster contain-

ing both i and j. Then C is a cluster in H at level Q̂ij . Let u, v ∈ C, u ̸= v be such that

M(xu, xv) = minu′ ̸=v′∈C M(xu′ , xv′) = M̂ij . Then we have that M(xi, xj) ≥M(xu, xv). On

the other hand, u and v are members of C, which is a cluster at level Q̂ij , so that Q̂uv ≥ Q̂ij .

Hence Q̂uv > M(xi, xj)− ϵ. But Q̂uv < M(xu, xv) + ϵ. Therefore, M(xi, xj)−M(xu, xv) <

2ϵ, and hence M(xi, xj) − M̂ij < 2ϵ. This holds for all i and j simultaneously, since i and

j were arbitrary. Hence the merge distortion is less than 2ϵ. ■

Accuracy of merge estimates.

We now prove that the merge estimate Q̂ is close to the mergeon M on the sample S

provided that the estimated edge probabilities P̂ are accurate, and that the sample S is

sufficient to capture the structure of W .

Recall that Q̂ij is defined to be the largest value of λ such that nodes i and j are

connected in the graph Hλ described above. There is an edge between nodes i and j in Hλ

if and only if P̂ij ≥ λ. Therefore, i and j are connected in Hλ if and only if there exists a

path in H from node i to node j along which every edge has weight λ, or, equivalently, there

exists a sequence of indices p1, . . . , pk such that P̂pt,pt+1 ≥ λ for each t ∈ {1, . . . , k − 1}.
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First, consider bounding Q̂ij from below. We do show by showing that there must

exist a sequence of points xi = xp1 , . . . , xpk = xj such that the estimated edge probability

between each consecutive pair of points is at least some λ, provided that P̂ is accurate and

S satisfies certain assumptions. If this is indeed the case, then i and j must be connected

at level λ in H, and therefore Q̂ij ≥ λ.

For this method of proof to succeed, the sample S must be sufficient to recover the

fine structure of the graphon. In order formalize this, we will discretize the graphon by

refining it into blocks on which it is approximately constant. We will then assume that the

sample S contains at least one point from each block of the partition. Because the value

of the graphon does not vary too much on each block of the partition, we may work with

sequences of blocks instead of sequences of samples; this will allow us to use our notions

of graphon connectedness which were defined for sets with positive measure, but not for

individual points in a graphon.

More precisely, we define a refinement as follows:

Definition 3.14. A set of blocks R = {Ri} is a ∆-refinement of a block partition B = {Bi}

if for every R ∈ R, ∆ ≤ µ(R) ≤ 2∆ and there exists some B ∈ B such that B ⊇ R.

We can think of the blocks in a refinement as being nodes in a weighted graph, such

that the weight of the edge between blocks R and R′ is approximately the value of W on

R×R′. As such, we define a path of blocks in a refinement as follows:

Definition 3.15 (λ-path). Let R be a block partition of [0, 1], and suppose R,R′ ∈ R. A

λ-path from R to R′ in a graphon W is a sequence ⟨R = R1, . . . , Rt = R′⟩ of blocks from R

such that, for all 1 ≤ i < t, W ≥ λ almost everywhere on Ri × Ri+1. The elements of the

path need not be distinct.

We now prove a key lemma used in lower-bounding Q̂ij . Rather than directly finding a

path of points between xi and xj , we instead find a sequence of refinement blocks between
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the block containing xi and the block containing xj . This allows us to use our notions of

graphon connectivity to lower-bound the edge weights along the path.

Lemma 3.9. Let W ∈ W c
B . Let R be a ∆-refinement of B, and suppose R,R′ ∈ R (possibly

with R = R′). If there exists a cluster C at level λ such that µ(C ∩R) > 0 and µ(C ∩R′) > 0,

then there exists a (λ′−2∆c)-path (R = R1, . . . , Rt = R′) between R and R′, for any λ′ < λ.

Proof. To be precise, let C = ρ(C ) be any representative of the cluster C . Fix a λ′ < λ.

Let

G = {R′′ ∈ R : µ(R′′ ∩ C) > 0}.

Then G contains, in particular, R1 and Rt. Since C is connected at level λ, it is true that

µ(W−1[λ′, 1] ∩ (R1 ∩ C)× (C \R1)) > 0.

Since C \R1 is a subset of (
∪
G) \R1, there must exist an R2 ∈ G such that

µ(W−1[λ′, 1] ∩R1 ×R2) > 0.

Consider W on R2. From above, we know that there is a non-negligible subset of R1 ×R2

on which W ≥ λ′. Hence there is some point in R1 ×R2 on which W ≥ λ′. Therefore, due

to the Lipschitz condition, we know that W is at least λ′ − 2∆c everywhere on R1 ×R2.

Now let S2 = R1 ∪ (R2 ∩ C). Now, since C is connected at level λ, it is true that

µ(W−1[λ′, 1] ∩ S2 × (C \ S2)) > 0.

By the same logic as above, there must exist an R3 ∈ G, R3 ̸= R2, R1 such that

µ(W−1[λ′, 1] ∩ S2 ×R3) > 0.
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Hence it must be the case that either

µ(W−1[λ, 1] ∩R1 ×R3) > 0,

or

µ(W−1[λ, 1] ∩R2 ×R3) > 0.

In either case, it is true that between any pair chosen from R1, R2, R3, there is a λ − 2∆c

path. The process continues, choosing R4, R5, . . . and so on. This process must complete in

a finite number of steps, since G is a finite set. At every step, there exists a (λ− 2∆c)-path

between any two of the Ri. Hence we eventually construct a (λ−2∆c)-path between R and

R′. ■

To prove an upper-bound on Q̂ij , we use the fact that the existence of a λ-path of blocks

implies that the path is connected at level λ in the graphon. Since the mergeon encodes

the level at which this connection occurs, this gives a bound on λ.

Lemma 3.10. Let W ∈ W c
B and let M be a mergeon of W . Let R be a ∆-refinement of B.

Let ⟨R1, . . . , Rt⟩ be a λ-path in R. Let C = R1 ∪ . . . ∪ Rt. Then C is connected at level λ

in W , and thus M ≥ λ almost everywhere on C × C = (R1 ∪ . . . ∪Rt)× (R1 ∪ . . . ∪Rt).

Proof. Let A be an arbitrary measurable subset of C such that 0 < µ(A) < µ(C). We will

show that W−1[λ, 1] ∩ A × (C \ A) has positive measure, and therefore C is connected at

level λ. Since C is connected at level λ in W , it must be part of some cluster at level λ,

and so the mergeon is at least λ almost everywhere on C × C.

There are two cases: Either 1) There exists a j ∈ [t] such that 0 < µ(Rj ∩ A) < µ(Rj),

or 2) for all i ∈ [t], either µ(Ri ∩A) = 0 or µ(Ri ∩A) = µ(Ri).

Assume the first case: there exists a j such that Rj contains some non-negligible part

of A, but µ(A ∩ Rj) < µ(Rj). Since there are at least two elements in the path, there is a
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j′ such that j′ ∈ [t] and |j − j′| = 1, that is, Rj′ is either immediately before or after Rj in

the λ-path. There are two sub-cases:

• µ(Rj′ ∩ A) = 0, such that Rj′ ⊆ C \ A. Then (Rj ∩ A) × Rj′ ⊆ A × (C \ A). Since

µ(Rj ∩ A) > 0 and µ(Rj′) > 0, we have that µ((Rj ∩ A) × Rj′) > 0, and since W is

at least λ a.e. on Rj ×Rj′ , we have that

µ(W−1[λ, 1] ∩A× (C \A)) ≥ µ(W−1[λ, 1] ∩ (Rj ∩A)×Rj′) > 0.

• µ(Rj′ ∩A) > 0. Then (Rj′ ∩A)× (Rj \A) ⊆ A× (C \A) is a set of positive measure.

Since W is at least λ a.e. on Rj′ ×Rj , we have:

µ(W−1[λ, 1] ∩A× (C \A)) ≥ µ
(
W−1[λ, 1] ∩ (Rj′ ∩A)× (Rj \A)

)
> 0.

Now consider the second case in which, for every i ∈ [t], µ(Ri ∩ A = 0) or µ(Ri ∩ A) =

µ(Ri). There must exist a j, j′ ∈ [t] such that |j − j′| = 1, µ(Rj ∩ A) = µ(Rj), and

µ(Rj′ ∩ A) = 0. If this were not the case, then it would be that either µ(Ri ∩ A) = µ(Ri)

for every i ∈ [t], or µ(Ri ∩ A) = 0 for every i ∈ [t]. But the former of these would imply

that µ(A) = µ(C), and the latter would imply µ(A) = 0, which we have assumed not to be

the case.

Therefore, Rj × Rj′ ⊆ A × (C \ A), and this set is of positive measure. Since W is at

least λ a.e. on Rj ×Rj′ , we once again find

µ(W−1[λ, 1] ∩A× (C \A)) ≥ µ
(
W−1[λ, 1] ∩Rj ×Rj′

)
> 0.

Hence, in every case it is true that µ(W−1[λ, 1]∩A×(C\A)) has positive measure. Since

A was arbitrary, C is connected at level λ. Hence M ≥ λ almost everywhere on C ×C. ■
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In addition, we show that the mergeon does not vary too much on a block of the

refinement:

Lemma 3.11. Let R,R′ ∈ R. Let C be a cluster tree, and let λ be the greatest level at

which there exists some cluster C containing a non-negligible piece of both R and R′. That

is,

λ = sup{λ′ : ∃C ∈ C(λ′) such that µ(R ∩ C ) > 0 and µ(R′ ∩ C ) > 0.}

Then λ′ − 2∆c ≤M ≤ λ almost everywhere on R×R′.

Proof. By the definition of the mergeon it must be that M ≤ λ almost everywhere on

R×R′, since if there existed a λ′ > λ for which M−1[λ′, 1] ∩R×R′ is not-null, this would

imply that there exists some cluster at level λ′ containing a non-negligible part of both R

and R′.

Now, by Lemma 3.9, for any λ′ < λ there exists a (λ′ − 2∆c) path between R and R′.

Hence, by Lemma 3.10, M ≥ λ′ − 2∆c almost everywhere on R×R′ for any λ′ < λ. ■

Putting these ideas together, we are able to bound the difference between the true merge

height of points in a mergeon, and the merge estimate Q̂.

Claim 3.9. Let W ∈ W c
B and let M be a mergeon of W . Let R be a ∆-refinement of B. Let

S = (x1, . . . , xn) be an ordered set of elements of [0, 1] such for any R ∈ R, R ∩ S ̸= ∅. Let

P be the edge probability matrix, i.e., the matrix whose (i, j) entry is given by W (xi, xj),

and suppose P̂ is such that ∥P̂ − P∥∞ < ϵ. Then maxi ̸=j |M(xi, xj)− Q̂ij | ≤ 4∆c+ ϵ.

Proof. Consider an arbitrary xi, xj ∈ S. Let Ri and Rj be the blocks in R which contain

xi and xj , respectively. Let λ∗ be the greatest level at which there exists some cluster

containing non-negligible parts of both Ri and Rj . Therefore, by Lemma 3.11, M is bounded

below by λ∗ − 2∆c and above by λ∗ almost everywhere on Ri ×Rj .

First we bound Q̂ij from below. By Lemma 3.9 there exists a (λ′ − 2∆c)-path ⟨Ri =

R1, . . . , Rt = Rj⟩ between Ri and Rj , for any λ′ < λ∗. By the assumption on S, there
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exists a sample from each element of the path, so that there is a path of samples ⟨xi =

xp1 , . . . , xpk = xj⟩ with the property that, between any two consecutive elements in the

path, we have W (xt, xt+1) ≥ λ′ − 2∆c for all λ′ < λ∗. Hence P̂xt,xt+1 ≥ λ∗ − 2∆c − ϵ.

Therefore, there exists a path in H from xi to xj such that every edge has weight of at least

λ∗ − 2∆− ϵ. As a result, Q̂ij ≥ λ∗ − 2∆c− ϵ.

We now bound Q̂ij from above. Let p = ⟨xi = x1, . . . , xt = xj⟩ be a path with cost Q̂ij .

Let ⟨R1, . . . , Rt⟩ be the corresponding path of blocks from R, such that xk ∈ Rk. Then we

have P̂xkxk+1
≥ Q̂ij , so that W (xk, xk+1) ≥ Q̂ij − ϵ. Hence there is a point in Rk × Rk+1

which is at least Q̂ij − ϵ, and by smoothness it follows that W ≥ Q̂ij − 2∆c − ϵ almost

everywhere on Rk × Rk+1. That is, ⟨R1, . . . , Rt⟩ is a (Q̂ij − 2∆c − ϵ)-path. Therefore,

Lemma 3.10 implies that the mergeon M is at least Q̂ij − 2∆c − ϵ almost everywhere on

Ri × Rj . However, by Lemma 3.11, M ≤ λ∗ almost everywhere on Ri × Rj . Therefore

Q̂ij ≤ λ∗ + 2∆c+ ϵ.

Combining the above bounds, we find that

|Q̂ij − λ∗| ≤ 2∆c+ ϵ.

The true merge height M(xi, xj) is bounded between λ∗ − 2∆c and λ∗, and so we have

|Q̂ij −M(xi, xj)| ≤ 4∆c+ ϵ.

■

Proof of Theorem 3.6.

We have bounded the difference between the merge estimate and the mergeon on a fixed

sample S under the assumption that S contains a point from every block of a suitable

refinement. We now reïntroduce randomness and show that such a sample occurs with high

probability as n → ∞. If the edge probability estimator P̂ is consistent in max-norm, it
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follows that single-linkage clustering applied to P̂ is a consistent estimator of the graphon

cluster tree.

Theorem 3.6. Let W be a piecewise c-Lipschitz graphon. Let P̂ be a consistent estimator

of P in max-norm. Let f be the clustering method which performs single-linkage clustering

using P̂ as a similarity matrix. Then f is a consistent estimator of the graphon cluster tree

of W in the sense of merge distortion.

Proof. As stated, f is the clustering method which takes a graph G and returns the clus-

tering CQ̂ described at the beginning of the section – the single linkage clustering of the

estimated edge probability matrix P̂. Let M be a mergeon of W . We will show that, for

any ϵ > 0.

ΛW,n

({
(G,S) : dS(M, M̂f(G)◦S) > ϵ

})
→ 0,

where M̂f(G)◦S is the merge height function induced on the clustering f(G) ◦ S by the

mergeon M , and ΛW,n is the label measure as defined in Section 3.7.2.

First, fix any ϵ > 0. Let ϵ̃ = ϵ/4. Define

Hn =

{
(G,S) ∈ Gn × [0, 1]n : max

i ̸=j
|P̂ − P | < ϵ̃

}
,

where P is the edge probability matrix induced by S and P̂ is the estimate of P computed

from G. By the assumption that P̂ is consistent in ∞-norm, we have ΛW,n(Hn) → 1 as

n→∞.

Now let ∆ = ϵ/16c. Let B be the block partition on which W is piecewise c-Lipschitz,

and let R be an arbitrary ∆-refinement of B. In order to apply Claim 3.9, we require that

the labeling S satisfies the property that every block R in the refinement contains at least

one point from S. The probability that a block R contains no points from a random sample

S is (1 − |R|)n ≤ (1 − ∆/2)n, since |R| ≥ ∆/2. Now take a union bound over all blocks

in the partition, of which there are at most 2/∆. Hence the probability that there exists a
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block in the partition that does not have a sample from S is at most 2
∆(1−∆/2)n. Let

Fn = {(G,S) ∈ Gn × [0, 1]n : |R ∩ S| > 1 for all R ∈ R} .

As per above, we have ΛW,n(Fn) =
2
∆(1−∆/2)n, which tends to 0 as n→∞.

By Claim 3.9, for every (G,S) ∈ Hn \ Fn, we have that, for all i ̸= j ∈ [n]× [n], writing

S = (x1, . . . , xn):

|Q̂ij −M(xi, xj)| ≤ 4∆c+ ϵ̃ = ϵ/2,

where Q̂ is the merge estimate between nodes i and j, described at the beginning of the

section. The clustering method f uses Q̂ to construct the clustering CQ̂ Therefore, by

Lemma 3.8, the merge distortion d(M, M̂f(G)◦S) is bounded above by ϵ on the set Hn \ Fn.

Since ΛW,n(Hn)→ 1 and ΛW,n(Fn)→ 0 as n→∞, we have ΛW,n(Hn \ Fn)→ 1 as n→∞

and have thus proven the claim. ■

3.9 Consistency of neighborhood smoothing

In the previous section, sufficient conditions for a consistent graphon clustering algorithm

were given. In particular, Theorem 3.6 shows that and edge probability estimator which

is consistent in max-norm gives rise to a consistent clustering algorithm. In this section,

we construct such a consistent estimator and thereby identify a consistent graph clustering

algorithm.

Estimating the graphon W or the edge probability matrix P is an area of recent research.

There are a number of methods in the literature; see, for instance, the works of Wolfe and

Olhede (2013), Chan and Airoldi (2014), Airoldi et al. (2013), Rohe et al. (2011), and Zhang

et al. (2015). To our knowledge, each work in this direction defines a slightly different sense

in which the proposed estimator is consistent, but all use some variant of the mean squared

error; i.e., estimators P̂ for which 1/n2∥P− P̂∥2F → 0 with high probability. Convergence in
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(a) (b) (c)

Figure 3.8: The neighborhood smoothing method of Zhang et al. (2015).

this norm ensures that the estimate is close to the true graphon in aggregate, but still allows

the estimate to differ from the ground truth by a large amount on a set of small measure.

Since our merge distortion is sensitive to the largest error, regardless of measure, consistency

of graphon estimators as shown in the literature is not sufficient to show consistency in merge

distortion.

One practical method of estimating P is the neighborhood smoothing algorithm of

Zhang et al. (2015). The method constructs for each node i in the graph G a neighborhood

of nodes Ni which are similar to i in the sense that for every i′ ∈ Ni, the corresponding

column Ai′ of the adjacency matrix is close to Ai in a particular distance. Aij is clearly not

a good estimate for the probability of the edge (i, j), as it is either zero or one, however, if

the graphon is piecewise Lipschitz, the average of Ai′j over i′ ∈ Nij will intuitively tend to

the true probability.

The neighborhood smoothing method is depicted in Figure 3.8. Figure (a) shows the

input adjacency matrix; its entries are either zero or one. Figure (b) illustrates the smooth-

ing process. The blue column represents the node i whose edge probabilities we would like

to estimate. We first build a neighborhood of similar columns, represented by the purple

bars in the image. We then average across this neighborhood to estimate the probability

of an edge between node i and each of its neighbors. Figure (c) depicts the output of the

algorithm: the smoothed edge probabilty estimate matrix whose entries are elements in the
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unit interval.

Like other graphon estimators, the method of Zhang et al. (2015) is proven to be con-

sistent in mean squared error. Since Theorem 3.6 requires consistency in max-norm, we

analyze a modification of this algorithm and show that it consistently estimates P in this

stronger sense. The proof of the following will constitute the remainder of the section:

Theorem 3.7. If the graphon W is piecewise Lipschitz, the modified neighborhood smoothing

algorithm in Section 3.9.2 is a consistent estimator of P in max-norm.

This leads to the following practical and consistent graph clustering algorithm: first,

we estimate the matrix P̂ of edge probabilities using the modified neighborhood smoothing

method, then we apply single-linkage clustering to P̂. The pseudocode of this clustering

algorithm is shown in Algorithm 1. As a corollary of Theorem 3.7 and Theorem 3.6, we

find that Algorithm 1 is consistent:

Corollary 3.1. If the graphon W is piecewise Lipschitz, Algorithm 1 is a consistent esti-

mator of the graphon cluster tree of W .

We now turn to proving Theorem 3.7.

3.9.1 The method of Zhang et al. (2015)

Theorem 3.6 states sufficient conditions under which an estimator P̂ of the edge probabil-

ity matrix leads to a consistent clustering algorithm. In particular, if the graphon W is

piecewise Lipschitz, and if for any ϵ > 0,

lim
n→∞

P(max
i ̸=j
|Pij − P̂ij | > ϵ) = 0,

then one consistent clustering algorithm is that which applies single-linkage clustering to

the estimate P̂. In this section, we analyze a modification of the edge probability estimator
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Algorithm 1 Clustering by nbhd. smoothing
Require: Adjacency matrix A, C ∈ (0, 1)

% Step 1: Compute the estimated edge
% probability matrix P̂ using neighborhood
% smoothing algorithm based on Zhang et al. (2015)
n← Size(A)
h← C

√
(log n)/n

for i ̸= j ∈ [n]× [n] do
Â← A after setting row/column j to zero
for i′ ∈ [n] \ {i, j} do
dj(i, i

′)← maxk ̸=i,i′,j |(Â2/n)ik − (Â2/n)i′k|
end for
qij ← hth quantile of {dj(i, i′) : i′ ̸= i, j}
Nij ← {i′ ̸= i, j : dj(i, i

′) ≤ qij(h)}
end for
for (i, j) ∈ [n]× [n] do
P̂ij ← 1

2

(
1

Nij

∑
i′∈Nij

Ai′j +
1

Nji

∑
j′∈Nji

Aij′

)
end for
% Step 2: Cluster P̂ with single-linkage
C ← the single linkage clusters of P̂
return C

introduced in Zhang et al. (2015) and show that it satisfies the above condition. Combining

this result with Theorem 3.6 shows that the single-linkage clustering applied this estimate

of the edge probability matrix is a consistent clustering algorithm.

The aim of the neighborhood smoothing method of Zhang et al. (2015) is to estimate

the random edge probability matrix P. In particular, the method defines a distance d(i, i′)

between the columns of the random adjacency matrix A as such:

d(i, i′) =
1

n
max
k ̸=i,i′

|⟨Ai −Ai′ ,Ak⟩| = max
k ̸=i,i′

|(A2/n)ik − (A2/n)i′k|.

The neighborhood Ni(A) of node i then consists of all nodes i′ such that d(i, i′) is below the

h-th quantile of {d(i, k)}k ̸=i, where h is a parameter of the algorithm. Note that Ni(A) is a

random set, as the neighborhood around node i depends on the random adjacency matrix

A. For simplicity, however, we will often omit the explicit dependence on A.
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The estimate of the probability of the edge (i, j), written P̂ij , is then computed by

smoothing over the neighborhoods Ni and Nj :

P̂ij =
1

2

 1

|Ni|
∑
i′∈Ni

Ai′j +
1

|Nj |
∑
j′∈Nj

Aij′

 .

If it is assumed that W ∈ W c
B , and h is set to be C0

√
log n/n for arbitrary constant C0,

where n is the size of the sampled graph, then the method is consistent in mean square

error. That is, for any ϵ > 0, as n→∞

P
(

1

n2
∥P̂−P∥2F > ϵ

)
→ 0

3.9.2 Our modification

In order to construct an algorithm which is a consistent estimator of the graphon cluster

tree in the sense made precise above, we need for the edge probability estimator to be

consistent in a stronger sense. In particular, we need that for any ϵ > 0, as n→∞

P
(
max
i ̸=j
|P̂ij −Pij | > ϵ

)
→ 0.

In order to show that the neighborhood smoothing method satisfies such a notion of con-

sistency, one might attempt to apply a concentration inequality to bound the difference

between 1
|Ni|

∑
i′∈Ni

Ai′j and Pij . The difficulty with this approach, however, is that such

concentration results require an assumption of statistical independence that is not satisfied

by the neighborhoods as defined; that is, the terms of the sum
∑

i′∈Ni
Ai′j are not statisti-

cally independent. It is true that, unconditioned, Ai′j and Ai′′j are independent Bernoulli

random variables. However, once we condition on the event i′ ∈ Ni and i′′ ∈ Ni, the random

variables Ai′j and Ai′′j are no longer independent.
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More precisely, we are interested in

P(Ai′j ,Ai′′j | i′, i′′ ∈ Ni) =
P(i′, i′′ ∈ Ni |Ai′j ,Ai′′j)P(Ai′j ,Ai′′j)

P(i′, i′′ ∈ Ni)
. (3.2)

The denominator of the RHS is a normalization constant which does not depend on Ai′j or

Ai′′j . Moreover, the entries of A are independent when unconditioned, and so P(Ai′j ,Ai′′j) =

P(Ai′j)P(Ai′′j). The difficulty is in computing P(i′, i′′ ∈ Ni | Ai′j ,Ai′′j). Intuitively, the

event i′ ∈ Ni depends on Ai′j , and, likewise, i′′ ∈ Ni depends on Ai′′j . This is because

i′ ∈ Ni when d(i, i′) is small. But d(i, i′) depends on Ai′j , since

d(i, i′) = max
k ̸=i,i′

|(A2/n)ik − (A2/n)i′k|,

=
1

n
max
k ̸=i,i′

∣∣∣∣∣
n∑

ℓ=1

Akℓ (Aiℓ −Ai′ℓ)

∣∣∣∣∣ .
and so Ai′j enters the sum and d(i, i′) depends on it. In the extreme case, suppose there are

two nodes i′ and i′′ such that the row vectors Ai′ and Ai′′ are identical except in their jth

component. Then the only difference between d(i, i′) and d(i, i′′) comes from the difference

in Ai′j and Ai′′j . Hence it is clear that d(i, i′) and d(i, i′′) depend on the values of Ai′j and

Ai′′j , and, by extension, the events i′ ∈ Ni and i′′ ∈ Ni are not independent of Ai′j and

Ai′′j .

Our modification of the algorithm is to change the way in which neighborhoods are

constructed so that statistical independence is ensured. Instead of constructing a neighbor-

hood for each node i, we construct a neighborhood Ni\j for each ordered pair (i, j) by using

a parameterized distance function dj which ignores all information about node j. More

precisely, let ∂jA represent the matrix obtained by setting the jth row and column of A to
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zero. Then for every node j we define

dj(i, i
′) = max

k ̸=i,i′,j
|([∂jA]2/n)ik − ([∂jA]2/n)i′k|,

=
1

n
max
k ̸=i,i′,j

∣∣∣∣∣∣∣∣
n∑

ℓ=1
ℓ ̸=j

Akℓ (Aiℓ −Ai′ℓ)

∣∣∣∣∣∣∣∣ .
Observe that Ai′j does not appear in dj(i, i′), and, since the other entries of A are indepen-

dent of Ai′j , we have that dj(i, i′) is statistically independent of Ai′j . Therefore the event

i′ ∈ Ni\j is independent of Aij .

We are now interested in the quantity:

P(Ai′j ,Ai′′j | i′, i′′ ∈ Ni\j) =
P(i′, i′′ ∈ Ni\j |Ai′j ,Ai′′j)P(Ai′j ,Ai′′j)

P(i′, i′′ ∈ Ni\j)
, (3.3)

where we are using the parameterized distance dj to construct the neighborhood Ni\j . In

this case, we apply the independence argument above to see that

P(i′, i′′ ∈ Ni\j |Ai′j ,Ai′′j) = P(i′, i′′ ∈ Ni\j).

Therefore the denominator cancels with the term in the numerator, and we have

P(Ai′j ,Ai′′j | i′, i′′ ∈ Ni\j) = P(Ai′j ,Ai′′j) = P(Ai′j)P(Ai′′j). (3.4)

As a result, Ai′j and Ai′′j are independent even when conditioning on the event i′ ∈ Ni\j

and i′′ ∈ Ni\j . This allows us to apply a concentration inequality to bound each entry of

P̂−P, and a max norm result follows after a simple union bound.

In total, the modified neighborhood smoothing procedure is as follows: Fix some neigh-

borhood size parameter h and let qi\j(h) denote the h-th quantile of the set {dj(i, i′) : i′ ̸=
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i, j}. Construct the neighborhood Ni\j by setting

Ni\j = {i′ ̸= i, j : dj(i, i
′) ≤ qi\j(h)}.

Then set

P̂ij =
1

2

 1

|Ni\j |
∑

i′∈Ni\j

Ai′j +
1

|Nj\i|
∑

j′∈Nj\i

Aij′

 .

We will show that this estimator of the edge probability matrix is consistent in max-norm.

3.9.3 Proof

There are two major components to the analysis. First, we show that, with high probability,

each neighborhood Ni\j consists only of nodes i′ for which ∥Pi − Pi′∥∞ < ϵ, with ϵ → 0

as n → ∞; The formal statement of this result is made in Lemmas 3.13 and 3.14 below.

This is an extension of the analysis in Zhang et al. (2015), where it is shown that the

neighborhood Ni consists only of nodes i′ for which 1/n ∥Pi −Pi′∥2 < ϵ, with ϵ → 0 as

n→∞. The procedure for proving this result parallels that of Zhang et al. (2015), however,

the modifications we make to the algorithm – namely, the deletion of a node from the graph

– mean that the claims in that paper do not directly transfer. Much of the analysis consists

of making the minor changes necessary to show that analogous versions of the claims in

Zhang et al. (2015) hold for our modified algorithm.

The second part of the analysis uses concentration inequalities to derive the consistency

result. In particular, Lemma 3.15 shows that smoothing within neighborhoods produces an

estimate of the edge probability matrix which is close within max-norm, provided that each

neighborhood consists only of nodes which are sufficiently similar in the sense described

above. Theorem 3.8 puts these two claims together to derive the main result.

We will make use of several minor technical results throughout the proof. For clarity,

these results are collected in Section 3.9.4.
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Sample requirements.

The analysis will require the notion of a block partition and ∆-refinement as defined in

Definition 3.13 and Definition 3.14, respectively, both in Section 3.8. IfR is a block partition

and x ∈ [0, 1], we write R(x) to denote the block R ∈ R which contains x. Some of the

following results will include an assumption that there are “enough” samples in each block

of a partition. We formalize this notion as follows:

Definition 3.16. If S is an ordered set of random samples from the uniform distribution

on the unit interval, and B is any block partition, we say that S is a ρ-dense sample in B

if for any block B ∈ B,
|B ∩ S|
n

> (1− ρ)µ(B).

If we fix any ρ and a ∆-block partition, a random sample S will be ρ-dense with high

probability as the size of the sample n→∞, as the following result shows:

Claim 3.10. Let B be a ∆-block partition. Let ρ < 1. Then with probability 1− 2
∆e

−2nρ2∆2,

S is a ρ-dense sample of B. That is, for all B ∈ B simultaneously,

|B ∩ S|
n

> (1− ρ)|B|.

Proof. Let B be an arbitrary block in the partition B. Since B is a ∆-partition, the size of

any block is between ∆/2 and ∆. Therefore there are at most 2/∆ blocks in B.

The membership of any given sample in B is a Bernoulli trial with probability |B| of

success. Applying Hoeffding’s inequality:

P
(∣∣∣∣ 1n |B ∩ S| − |B|

∣∣∣∣ > ϵ

)
< e−2nϵ2 .
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Choose ϵ = ρ∆. This gives

P
(∣∣∣∣ 1n |B ∩ S| − |B|

∣∣∣∣ > ρ∆

)
< e−2nρ2∆2

,

which implies

P
(
1

n
|B ∩ S| > |B| − ρ∆

)
< e−2nρ2∆2

.

Now, |B| ≤ ∆, so that for any arbitrary B it is true that

P
(
1

n
|B ∩ S| > |B| − ρ|B|

)
< e−2nρ2∆2

.

The result follows by applying a union bound over all blocks of the partition, of which there

are at most 2/∆. ■

The adjacency column distance.

In the previous section detailing our modified neighborhood smoothing algorithm, we mo-

tivated a new distance dj(i, i′) between columns of the adjacency matrix. This distance is

computed by first deleting all information about node j from the adjacency matrix. We

achieve this by setting the jth column and row of the adjacency matrix to zero. Because

this will be a common operation in our proof, we define the following notation:

Definition 3.17. For a square matrix M , let ∂vM denote the matrix obtained by replacing

the v-th row and column of the matrix M with zeros.

With this notation, the distance between node i and i′ is written

dj(i, i
′) = max

k ̸=i,i′

∣∣∣[(∂jA)2 /n
]
ik
−
[
(∂jA)2 /n

]
i′k

∣∣∣ .
This pattern – the maximum elementwise difference of normalized squared matrices –

will reoccur in the analysis. We therefore make the following definition:
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Definition 3.18. Let M1 and M2 be n× n matrices. We define

D(M1,M2) = max
i,j

∣∣∣[M2
1 /n

]
ij
−
[
M2

2 /n
]
ij

∣∣∣ .
A key observation in the analysis of Zhang et al. (2015) is that if A is sampled from P ,

then for any fixed ϵ > 0, P(D(A, P ) < ϵ)→ 0 as n→∞. In our analysis, however, we will

work with ∂kA and ∂kP , which are the adjacency and edge probability matrices with the

kth row and column set to zero. We therefore have a slightly modified claim:

Lemma 3.12. Let P be an arbitrary n×n edge probability matrix. Let C2 > 0 be an arbitrary

constant and suppose n is large enough that
√

(C2+2) logn
n ≤ 1. Then, with probability 1 −

2n−C2/4 over random adjacency matrices A sampled from P , for all k ∈ [n] simultaneously,

D(∂kA, ∂kP ) = max
i ̸=j

∣∣∣∣[(∂kA)2 /n
]
ij
−
[
(∂kP )

2 /n
]
ij

∣∣∣∣ ≤
√

(C2 + 2) log n

n
+

6

n
.

Proof. The proof of Lemma 5.2 in Zhang et al. (2015) establishes that, given the above

assumptions, with probability 1− 2nC2/4,

D(A, P ) = max
i ̸=j

∣∣∣[A2/n
]
ij
−
[
P 2/n

]
ij

∣∣∣ ≤√(C2 + 2) log n

n
+

4

n
.

From Claim 3.13, for all k,

∣∣∣∣[A2/n
]
ij
−
[
(∂kA)2 /n

]
ij

∣∣∣∣ ≤ 1

n
,∣∣∣∣[P 2/n

]
ij
−
[
(∂kP )

2 /n
]
ij

∣∣∣∣ ≤ 1

n
,
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and so, with probability 1− 2n−C2/4 ,

max
i ̸=j

∣∣∣∣[(∂kA)2 /n
]
ij
−
[
(∂kP )

2 /n
]
ij

∣∣∣∣ ≤ max
i ̸=j

∣∣∣[A2/n
]
ij
−
[
P 2/n

]
ij

∣∣∣+ 2

n

≤
√

(C2 + 2) log n

n
+

6

n
.

■

Composition of neighborhoods.

Another key step in the analysis of Zhang et al. (2015) is that, with high probability, for

any i′ in the neighborhood of node i, 1/n
∥∥Pi′ − P 2

i

∥∥
2
= O(

√
logn/n). We derive a similar

result for our modified neighborhoods:

Lemma 3.13. Let W ∈ W c
B and let R be a ∆-refinement of B. Suppose S is a ρ-dense

sample of R and let P be the induced edge probability matrix. Suppose A is an adjacency

matrix such that D(∂kA, ∂kP ) < ϵ for every k ∈ [n]. Pick 0 < h ≤ ρ∆, and construct for

every pair i, j a neighborhood Ni\j as described above, including all nodes within the h-th

quantile. Then for all i, j and any i′ ∈ Ni\j we have

1

n
∥Pi − Pi′∥22 ≤ 6c∆+ 8ϵ+

5

n
.

Proof. We start by applying Claim 3.15, which yields

1

n
∥Pi − Pi′∥22 ≤ 2dj(i, i

′) +
1

n
+ 4c∆+ 4ϵ.

We now upper bound dj(i, i
′). Since we have assumed that h ≤ ρ, at least a fraction h of

the nodes are within i’s partition in the refinement. Therefore the distance between any

two nodes in the neighborhood is bounded above by the maximum distance between two
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nodes in this partition. This is computed in Claim 3.16, such that:

1

n
∥Pi − Pi′∥22 ≤ 2

(
c∆+ 2ϵ+

2

n

)
+

1

n
+ 4c∆+ 4ϵ

= 6c∆+ 8ϵ+
5

n
.

■

Additionally, we prove that neighborhoods are composed of nodes whose corresponding

columns of P are close in ∞-norm. This follows from the previous claim after leveraging

the piecewise Lipschitz condition.

Lemma 3.14. Let W ∈ W c
B and let R be a ∆-refinement of B. Suppose S is a ρ-dense

sample of R. Then for any ϵ ≥ 4ρ∆3c2, if i ̸= j are such that 1
n ∥Pi − Pj∥22 ≤ ϵ, then

∥Pi − Pj∥2∞ ≤ 4ϵ
ρ∆ .

Proof. Suppose ϵ ≥ 4ρ∆3c2. Define α =
√
4ϵ/(ρ∆) and suppose that ∥Pi−Pj∥∞ > α. This

implies that there exists a k such that |Pik − Pjk| > α. Consider any k′ ∈ R(k). Then

|Pik′ − Pjk′ | =
∣∣(Pik′ − Pik) + Pik − (Pjk′ − Pjk)− Pjk

∣∣
=
∣∣(Pik′ − Pik) + (Pjk − Pjk′) + (Pik − Pjk)

∣∣
Since |xk − xk′ | < ∆ by virtue of being in the same block R(xk), we have |Pik′ −Pik| ≤ ∆c.

But by assumption, ∆ ≤ α/(4c). Therefore, |Pik′−Pik| ≤ α/4. Similarly, |Pjk′−Pjk| ≤ α/4.

The last term satisfies |Pik − Pjk| > α. Therefore the entire quantity must be at least:

> α/2.
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Now consider

1

n
∥Pi − Pj∥22 =

1

n

∑
l

(Pil − Pjl)
2,

≥ 1

n

∑
k′∈R(k)

(Pik′ − Pjk′)
2.

But, as established above, each term in the sequence is at least α/2, and so:

>
1

n

∑
k′∈R(k)

α2/4.

Since S is assumed to be a ρ-dense sample of R, there are at least ρ∆n elements in R(k).

Therefore:

≥ ρ∆α2

4
= ϵ.

The claim follows from the contrapositive. ■

Main result.

Intuitively, if every neighborhood Ni\j is composed of nodes whose corresponding columns

of P are close in ∞-norm, and whose jth elements are statistically independent, we may

apply a concentration inequality to conclude that the estimate P̂ij is close to Pij . The

following claim makes this precise.

Lemma 3.15. Let W ∈ W c
B and let R be a ∆-refinement of B. Let S ∈ [0, 1]n be fixed, and

let P be the edge probability matrix induced by S. Assume that with probability 1 − δ over

graphs generated from P , that for all i ̸= j simultaneously, ∥Pi−Pi′∥∞ < ϵ for all i′ ∈ Ni\j.
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Then with probability at least (1− δ)
[
1− 2n(n− 1)e−2hnt2

]
,

max
ij

∣∣∣P̂ij − Pij

∣∣∣ < ϵ+ t.

Proof. Consider an arbitrary ordered pair of nodes i ̸= j. The neighborhood Ni\j is a

random variable, since it depends on the random adjacency matrix A. Define ℓi\j to be the

amount by which our smoothed estimate computed using Ni\j differs from Pij :

ℓi\j =

∣∣∣∣∣∣Pij −
1

Ni\j

∑
i′∈Ni\j

Ai′j

∣∣∣∣∣∣ .
Note that ℓi\j is itself a random variable, and we seek to compute

P
(
max
i ̸=j

ℓi\j < ϵ̃

)
,

where it will be assumed that ϵ̃ > ϵ.

Denote by Ni\j the subset of 2[n] consisting of all possible values of the neighborhood

Ni\j over all graphs on [n]. Denote by N ϵ
i\j the subset of Ni\j consisting of neighborhoods

with the property that that if i′ is in the neighborhood, then ∥Pi − Pi′∥∞ < ϵ. Then

P
(
max
i ̸=j

ℓi\j < ϵ̃

)
≥ P

(
max
i ̸=j

ℓi\j < ϵ̃

∣∣∣∣ ∀ i ̸= j, Ni\j ∈ N ϵ
i\j

)
P
(
∀ i ̸= j, Ni\j ∈ N ϵ

i\j

)
≥ P

(
max
i ̸=j

ℓi\j < ϵ̃

∣∣∣∣ ∀ i ̸= j, Ni\j ∈ N ϵ
i\j

)
(1− δ).

We now lower bound the probability that an arbitrary pair u ̸= v is such that ℓu\v < ϵ̃.

The result will then follow from a union bound. That is, we would like to compute, for

arbitrary u ̸= v, the probability

P
(
ℓu\v < ϵ̃

∣∣∣ ∀ i ̸= j, Ni\j ∈ N ϵ
i\j

)
= P

(
ℓu\v < ϵ̃

∣∣∣Nu\v ∈ N ϵ
u\v

)
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We decompose this quantity as a sum over all neighborhoods in N ϵ
u\v:

=
∑

N∈N ϵ
u\v

P
(
ℓu\v < ϵ̃

∣∣Nu\v = N
)
P
(
Nu\v = N

∣∣∣Nu\v ∈ N ϵ
u\v

)

We now claim that, conditioned on a particular neighborhood N , the random variables

Au1v and Au2v are independent. We may then apply Hoeffding’s inequality to conclude:

P

(∣∣∣∣∣ 1

|N |
∑
u′∈N

(Au′v − Pu′v)

∣∣∣∣∣ > t

)
< e−2hnt2 .

Where we have used the fact that there are at least hn nodes in the neighborhood N . By

the assumption that |Puv − Pu′v| < ϵ for any u ∈ N , we have:

P

(∣∣∣∣∣Puv −
1

|N |
∑
u′∈N

Au′v

∣∣∣∣∣ > t+ ϵ

)
< e−2hnt2 .

So that

P
(
ℓu\v < ϵ̃

∣∣∣ ∀ i ̸= j, Ni\j ∈ N ϵ
i\j

)
=

∑
N∈N ϵ

u\v

P
(
ℓu\v < ϵ̃

∣∣Nu\v = N
)
P
(
Nu\v = N

∣∣∣Nu\v ∈ N ϵ
u\v

)
>
(
1− e−2hnt2

) ∑
N∈N ϵ

u\v

P
(
Nu\v = N

∣∣∣Nu\v ∈ N ϵ
u\v

)
=
(
1− e−2hnt2

)

Now, returning to:

P
(
max
i ̸=j

ℓi\j < ϵ̃

)
≥ P

(
max
i ̸=j

ℓi\j < ϵ̃

∣∣∣∣ ∀ i ̸= j, Ni\j ∈ N ϵ
i\j

)
(1− δ)
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We apply a union bound over all 2n(n− 1) ordered pairs to obtain:

> (1− δ)
(
1− 2n(n− 1)

[
1− e−2hnt2

])
.

■

We combine all of the previous results to derive our main result.

Theorem 3.8. Let W ∈ W c
B . Let P be the random edge probability matrix arising by

sampling a graph of size n from W according to the graphon sampling procedure, and denote

by P̂ the estimated edge probability using our modified neighborhood smoothing method.

Then

max
i ̸=j

∣∣∣P̂ij −Pij

∣∣∣ = Op

([
log n

n

]1/6)
.

Proof. The mechanism of the proof involves a translation from the L2 result of Zhang

et al. (2015) to our desired max-norm result. To accomplish this, we will make use of

two discretizations at different scales. First, define arbitrary constants α2, α∞ > 0 and

0 < ρ < 1 such that ρ · α2 >
1
2 , and let

∆2(n) = α2

√
log n

n
, ∆∞(n) = α∞

(
log n

n

)1/6

,

for any n ≥ 2. For each n ≥ 2, let R∞(n) be an arbitrary ∆∞(n)-refinement of B, and

let R2(n) be an arbitrary ∆2(n)-refinement of R∞(n). In what follows we will drop the

functional notation, as the dependence of these quantities on n should be clear.
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Let S be a random sample of [0, 1]. Then, according to Claim 3.10, S is ρ-dense in R2

with probability

1− 2

∆2
e−2nρ2∆2

2 = 1− 2α2

√
n

log n
e−2nρ2α2

2
logn
n ,

= 1− 2α2

√
n

log n
n−2α2

2ρ
2
,

≥ 1− 2α2

√
n · n−2α2

2ρ
2
,

= 1− 2α2n
1
2
−2α2

2ρ
2
.

Since ρ · α2 > 1/2 by assumption, this is a decreasing function in n.

We have so-far shown that a sample is “good” with high probability in the sense that it is

ρ-dense in R2. We now show that, assuming the sample S = S is a fixed, ρ-dense sample of

R2, the estimate P̂ is good in max-norm with high probability over random graphs sampled

according to the distribution induced by S.

We begin by showing that, with high probability, the neighborhood around node i

contains only nodes i′ such that Pi and Pi′ are close in 2-norm, which will follow from

combining Lemmas 3.12 and 3.13. We will use this result to invoke Lemma 3.14, which

says that, for i′ in the neighborhood of i, Pi and Pi′ are close in ∞-norm. This will in turn

satisfy the assumptions of Lemma 3.15, which shows that P̂ is close to P .

First, we combine Lemmas 3.12 and 3.13 to show that, with high probability, 1
n ∥Pi − Pi′∥22

is small when i′ is in Ni\j . Fix an arbitrary constant C2 > 0 and suppose that n is

large enough that
√
(C2 + 2) log n/n ≤ 1. Then Lemma 3.12 says that, with probability

1 − 2n−C2/4 over random adjacency matrices A generated by P , for all k ∈ [n] simultane-

ously,

D(∂kA, ∂kP ) ≤
√

(C2 + 2) log n

n
+

6

n
.
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Using R2 as the partition in Lemma 3.13, we find that this implies that the adjacency

matrix A is such that for any i, j and i′ ∈ Ni\j ,

1

n
∥Pi − Pi′∥22 ≤ 6c∆2 + 8

(√
(C2 + 2) log n

n
+

6

n

)
+

5

n

≤ 6cα2

√
log n

n
+ 8

√
(C2 + 2) log n

n
+

53

n

=
(
6cα2 + 8

√
C2 + 2

)√ log n

n
+

53

n

≤ α̃2

√
log n

n

where α̃2 is an arbitrary constant greater than 6cα2 + 8
√
C2 + 2, and assuming that n is

large enough that 53/n ≤ α̃2 − 6cα2 + 8
√
C2 + 2.

Now we may invoke Lemma 3.14 using R∞ as the refinement of B. Define γ =

max{α̃2, 4ρα
3
∞c

2} and let ϵ̃ = γ
√

logn
n . Then, from the previous result, for any i′ ∈ Ni\j ,

1
n ∥Pi − Pi′∥22 ≤ γ

√
logn
n . Furthermore,

ϵ̃ = γ

√
log n

n
≥ 4ρα3

∞c
2

√
log n

n
= 4ρc2

[
α∞

(
log n

n

)1/6
]3

= 4ρc2∆3
∞

and so we may use the claim to conclude that, with probability at least 1 − 2n−C2/4 over

graphs generated from P , for all i, j ∈ [n] and any i′ ∈ Ni\j ,

∥Pi − Pi′∥2∞ ≤
4γ

ρ∆∞

√
log n

n
=

4γ

ρ · α∞

(
log n

n

)1/3

.

Now we may apply Lemma 3.15. Let αt be an arbitrary constant, and choose

t = αt

(
log n

n

)1/6

.
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Then, with probability

(
1− 2n−C2/4

)(
1− n2−2hαt

(
n

logn

)2/3
)
,

it holds that

max
ij

∣∣∣P̂ij − Pij

∣∣∣ < (αt +

√
4γ

ρ · α∞

)(
log n

n

)1/6

.

The probability over all samples and graphs is therefore

(
1− 2n−C2/4

)(
1− n2−2hαt

(
n

logn

)2/3
)(

1− 2α2

√
n

log n
n−2α2

2ρ
2

)
.

■

3.9.4 Supplementary claims

The following claims will be used in the proofs of Section 3.9.3, and are gathered here for

convenience.

Claim 3.11. Let R2 be a block partition. Suppose R1 is a ∆-refinement of R2. If a S is a

ρ-dense sample of R1, then it is also a ρ-dense sample of R2.

Proof. Suppose S is a ρ-dense sample of R1. Take any block R ∈ R2. Then R is the disjoint

union of blocks in R1:

R = R1 ∪ . . . ∪Rt

where Ri ∈ R1. Each Ri is such that |Ri| ≤ ∆. Therefore:

|R ∩ S|
n

=
∑
i

|Ri ∩ S|
n

≥
∑
i

(1− ρ)|Ri| = (1− ρ)
∑
i

|Ri| = (1− ρ)|R|.

Therefore S is a ρ-dense sample of R2. ■
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Claim 3.12. Let M be an n × n matrix with values in [0, 1]. Then for any distinct

u, u′, v ∈ [n],

∥(∂vM)u − (∂vM)u′∥22 ≥ ∥Mu −Mu′∥22 − 1

Proof.

∥(∂vM)u − (∂vM)u′∥22 =
∑
t

((∂vM)ut − (∂vM)u′t)
2

=
∑
t

(Mut −Mu′t)
2 − (Muv −Mu′v)

2

= ∥Mu −Mu′∥22 − (Muv −Mu′v)
2

≥ ∥Mu −Mu′∥22 − 1

■

Claim 3.13. Let M be an n × n symmetric matrix with values in [0, 1]. Then for any

distinct i, j, k ∈ [n], [
M2
]
ij
− 1 ≤

[
(∂kM)2

]
ij
≤
[
M2
]
ij
.

Proof. We have

[
(∂kM)2

]
ij
=
∑
l ̸=k

MilMlj

=
∑
l

MilMlj −MikMkj

=
[
M2
]
ij
−MikMkj

The product MikMkj is at most one and at least zero, which proves the claim. ■
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Claim 3.14. Let M be an n× n symmetric matrix. Then for any distinct i, i′ ∈ [n],

∥Mi −Mi′∥22 =
(
M2
)
ii
− 2

(
M2
)
ii′

+
(
M2
)
i′i′
.

Proof. For any u, v we have (
M2
)
uv

=
∑
k

MukMvk.

Therefore,

(
M2
)
ii
− 2

(
M2
)
ii′

+
(
M2
)
i′i′

=
∑
k

M2
ik − 2

∑
k

MikMi′k +
∑
k

M2
i′k

=
∑
k

(Mik −Mi′k)
2

= ∥Mi −Mi′∥22 .

■

Claim 3.15. Let W ∈ W c
B . Suppose R is a ∆-refinement of B. Let S = (x1, . . . , xn) be a

fixed sample. Fix ∆ > 0 and assume that |R(xi) ∩ S| ≥ 4 for every i ∈ [n]. Let P be the

edge probability matrix induced by S. Let A be an adjacency matrix, and suppose that A is

such that D(∂kA, ∂kP ) < ϵ for all k ∈ [n]. Then for all i ̸= j ̸= k simultaneously,

2dk(i, j) +
1

n
+ 4c∆+ 4ϵ ≥ 1

n
∥Pi − Pj∥22

for dk computed w.r.t. A.

Proof. We may apply Claim 3.12 to obtain

1

n
∥Pi − Pj∥22 ≤

1

n
∥(∂kP )i − (∂kP )j∥22 +

1

n
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which may be expanded using Claim 3.14, yielding:

=
[
(∂kP )

2 /n
]
ii
− 2

[
(∂kP )

2 /n
]
ij
+
[
(∂kP )

2 /n
]
jj
+

1

n

≤

∣∣∣∣∣ [(∂kP )2 /n]ii − [(∂kP )2 /n]ij
∣∣∣∣∣+
∣∣∣∣∣ [(∂kP )2 /n]jj − [(∂kP )2 /n]ij

∣∣∣∣∣+ 1

n

By virtue of the fact that every block R(xi) in the refinement contains at least 4 points, we

may find an xĩ ∈ R(xi)∩S and j̃ ∈ R(xj)∩S such that ĩ ̸= i, k and j̃ ̸= j, k. It is clear that[
(∂kP )

2 /n
]
ii

differs from
[
(∂kP )

2 /n
]
ĩi

by at most c∆, and similarly for the other terms.

Hence

≤

∣∣∣∣∣ [(∂kP )2 /n]ĩi − [(∂kP )2 /n]ĩj
∣∣∣∣∣+
∣∣∣∣∣ [(∂kP )2 /n]jj̃ − [(∂kP )2 /n]ij̃

∣∣∣∣∣+ 1

n
+ 4c∆

Next we apply the assumption that D(∂kA, ∂kP ) < ϵ:

≤

∣∣∣∣∣ [(∂kA)2 /n]ĩi − [(∂kA)2 /n]ĩj
∣∣∣∣∣+
∣∣∣∣∣ [(∂kA)2 /n]jj̃ − [(∂kA)2 /n]ij̃

∣∣∣∣∣+ 1

n
+ 4c∆+ 4ϵ

≤ 2max
l ̸=i,j

∣∣∣∣[(∂kA)2 /n]il − [(∂kA)2 /n]jl
∣∣∣∣+ 1

n
+ 4c∆+ 4ϵ

We recognize this as:

= 2dk(i, j) +
1

n
+ 4c∆+ 4ϵ.

■

Claim 3.16. Let W ∈ W c
B . Fix a sample S = (x1, . . . , xn) and let P be the induced edge

probability matrix. Suppose that R is a ∆-refinement of B. Now suppose that nodes xi and

xi′ are from the same R(xi′′) for some i′′. Furthermore, suppose that A is an adjacency
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matrix with the property that D(∂jA, ∂jP ) ≤ ϵ for all j ∈ [n]. Then for all j ̸= i, i′,

dj(i, i
′) ≤ c∆+ 2ϵ+

2

n
.

Proof. We have

dj(i, i
′) = max

k ̸=i,i′

∣∣∣[(∂jA)2 /n]
ik
−
[
(∂jA)

2 /n
]
i′k

∣∣∣
Applying the fact that D(∂jA, ∂jP ) ≤ ϵ:

≤ max
k ̸=i,i′

∣∣∣[(∂jP )2 /n]
ik
−
[
(∂jP )

2 /n
]
i′k

∣∣∣+ 2ϵ

Applying Claim 3.13 yields an additional two terms of 1/n:

≤ max
k ̸=i,i′

∣∣[P 2/n
]
ik
−
[
P 2/n

]
i′k

∣∣+ 2ϵ+
2

n

The fact that xi and xi′ are from the same block of the ∆-refinement implies that |xi−xi′ | ≤

∆. Hence, by smoothness of W , we have that |Pik − Pi′k| ≤ c∆ for every k. It is therefore

the case that for any k
∣∣[P 2/n

]
ik
−
[
P 2/n

]
i′k

∣∣ ≤ c∆, as is shown in the proof of Lemma 5.2

in Zhang et al. (2015). Therefore:

≤ c∆+ 2ϵ+
2

n
.

■

3.10 Experiments

In this section we apply the graph clustering method proposed in Algorithm 1 of Section 3.9

to real and synthetic data. The purpose of these experiments is to help the reader develop an
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Figure 3.9: Network of college football games played during the 2000 regular season.

intuition for how the clustering method works, and not necessarily to demonstrate superior

practical performance. As such, only limited comparisons are made to existing clustering

methods.

3.10.1 Football dataset

We first apply Algorithm 1 to the football network from Girvan and Newman (2002). This is

a undirected, unweighted graph representing the games played between all NCAA Division

I-A American college football teams during the regular season in the year 2000. Each team

appears as a node in the graph; an edge exists between two teams if and only if they played

one another. The graph, shown in Figure 3.9, includes 115 nodes (teams) and 613 edges

(games).

In this year, the teams in Division I-A were divided into eleven football conferences,

excepting five “independent” teams which belonged to no conference in particular. The

conferences and their associated teams4 are shown in Table 3.1. In general, an American

college football team will play the majority of its games against opponents belonging to its
4 Note that the dataset from Girvan and Newman (2002) erroneously assigns Texas Christian to C-USA.

Texas Christian was in fact in the WAC in the year 2000, and we have made this correction before performing
our analysis.
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ACC Big 10 Big 12 Big East C-USA Independent
Clemson Illinois Baylor BostonCollege AlabamaBirmingham CentralFlorida

Duke Indiana Colorado MiamiFlorida Army Connecticut
FloridaState Iowa IowaState Pittsburgh Cincinnati Navy
GeorgiaTech Michigan Kansas Rutgers EastCarolina NotreDame

Maryland MichiganState KansasState Syracuse Houston UtahState
NorthCarolina Minnesota Missouri Temple Louisville

NorthCarolinaState Northwestern Nebraska VirginiaTech Memphis
Virginia OhioState Oklahoma WestVirginia SouthernMississippi

WakeForest PennState OklahomaState Tulane
Purdue Texas

Wisconsin TexasA&M
TexasTech

MAC MW Pac 10 SEC Sunbelt WAC
Akron AirForce Arizona Alabama ArkansasState BoiseState

BallState BrighamYoung ArizonaState Arkansas Idaho FresnoState
BowlingGreenState ColoradoState California Auburn LouisianaLafayette Hawaii

Buffalo NevadaLasVegas Oregon Florida LouisianaMonroe LouisianaTech
CentralMichigan NewMexico OregonState Georgia MiddleTennesseeState Nevada
EasternMichigan SanDiegoState SouthernCalifornia Kentucky NewMexicoState Rice

Kent Utah Stanford LouisianaState NorthTexas SanJoseState
Marshall Wyoming UCLA Mississippi SouthernMethodist

MiamiOhio Washington MississippiState TexasChristian
NorthernIllinois WashingtonState SouthCarolina TexasElPaso

Ohio Tennessee Tulsa
Toledo Vanderbilt

WesternMichigan

Table 3.1: Conference memberships in the football dataset.

own conference – though the team will not usually play every other conference member in

the same season. The remaining games on the team’s schedule are against out-of-conference

opponents. For instance, Ohio State belongs to the Big 10 conference, and in this particular

season played conference opponents Iowa, Illinois, Purdue, Michigan, Minnesota, Wisconsin,

Michigan State, and Penn State, as well as out-of-conference opponents Miami of Ohio,

Arizona, and Fresno State. Because of this connection between conference membership and

the scheduling of games, it is reasonable to assume that the graph of football games will

exhibit cluster structure. In particular, the clusters of the graph should roughly correspond

to the eleven football conferences. As such, we apply the neighborhood smoothing and

clustering method to this network and compare the resulting clusters to the eleven football

conferences.

The input to the algorithm is the adjacency matrix of the football graph, shown in
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Figure 3.10(a). Rearranging the rows and columns of the adjacency matrix according to

conference membership as shown in Figure 3.10(b) reveals the network’s cluster structure.

Note that the algorithm does not have access to this rearranged adjacency or the conference

membership of each team; it is shown here only for the convenience of the reader. Smoothing

was performed with the neighborhood size parameter C = 0.09; the parameter was chosen

by hand to produce a good clustering. The output P̂ of the network smoothing step is

shown in Figure 3.10(c); this matrix after rearranging by conference membership is shown

in Figure 3.10(d).

The effect of neighborhood smoothing is to propagate trends in scheduling to all teams

within a conference. For instance, consider the ACC and Big East conferences. As Fig-

ure 3.10(b) shows, in this season there were five games played between these conferences.

Most ACC teams played at least one Big East opponent, but some ACC teams played no

Big East opponent. After applying neighborhood smoothing, however, the estimated prob-

ability that any ACC team should play any Big East team is uniformly nonzero, as shown

in Figure 3.10. That is, even if an ACC team played no Big East opponent, the algorithm

smooths the estimate of the probability of such a game to be consistent with the other

teams in the conference.

In the clustering step, single-linkage clustering is applied to P̂ , interpreting it as a

similarity matrix. The resulting dendrogram is shown in Figure 3.11. Nodes joining at

higher levels of the tree are more similar. If all of the leaf nodes in a subtree belong to the

same conference, every edge in the subtree is marked with the same color. Different colors

are used to distinguish such subtrees, but the particular color used is not meaningful. The

conference labels in the figure are used to show where the majority of that conference’s

teams are in the clustering. Not marked is the Sun Belt conference, the majority of whose

teams are placed between the Big East and Big 12, and the independent teams which belong

to no conference in particular.
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In general the clustering recovers the conferences with high accuracy. In addition, be-

cause the clustering is a tree and not a flat partitioning of the teams, more structure is

evident. For instance, the clusters corresponding to the MW (Mountain West) conference

and the Pac 10 are joined at a high level. This is because the Mountain West and Pac 10

are comprised of teams which are from roughly the same geographical area – the western

United States.
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(a) The input adjacency matrix.
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(b) The input adjacency matrix, rearranged
according to conference membership.

(c) The result of neighborhood smoothing.
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(d) The result of neighborhood smoothing,
rearranged according to conference member-
ship.

Figure 3.10: The neighborhood smoothing step as applied to the football network.
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Figure 3.11: The clustering of the football network produced by Algorithm 1.
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3.10.2 Synthetic network sampled from a graphon

In this experiment we apply Algorithm 1 to a network sampled from the graphon shown in

Figure 3.12a. This graphon was chosen to demonstrate a non-trivial case where a simple

clustering method may yield the incorrect result. The graphon consists of three large

blocks along the diagonal which take value 0.7. The first two of these blocks are joined by

a small region whose value is 0.5. As such, the cluster tree of this graphon is as shown in

Figure 3.12b.

The adjacency matrix of a graph sampled from this graphon is shown in Figure 3.12c.

The matrix in the figure has been rearranged in order to show the cluster structure of

the graph; The matrix given as input to the smoothing algorithm is a permutation of this

matrix. Smoothing was applied with a neighborhood size parameter of C = 0.1. The result

is shown in Figure 3.12d.

In the cluster step, single linkage is applied to the smoothed estimate of edge prob-

abilites. The resulting dendrogram is shown in Figure 3.13a. Three major clusters are

evident in the tree, two of which are joined at a noticeably higher level. As we would expect

from a consistent clustering method, the dendrogram resembles the ground-truth cluster

tree shown in Figure 3.12b.

On the other hand, one simple approach to network clustering fails. In this approach,

we use the pairwise distance between columns of the adjacency matrix as input to single-

linkage clustering. That is, for every i, j ∈ {1, . . . , n}, we use the matrix D whose i, j

entry is ∥Ai − Aj∥, where Ai and Aj are the ith and jth columns of A, respectively, and

∥ · ∥ is a suitable norm – here, we use the 2-norm. Such a simple approach can often work

in practice; for example, this method works well on the football network in the previous

section. However, as the results shown in Figure 3.13b demonstrate, it does not work as

well for recovering the graphon cluster tree. Though the method appears to recover three

clusters, it does not join two of them at a significantly higher level. Therefore the resulting

tree does not resemble the ideal tree. In fact, is easily seen that this method is not consistent
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(a) The graphon used in the synthetic exper-
iment. The graphon takes on three values:
The darkest region has a height of 0.7; the
small, medium-dark blocks are of height 0.5;
the remaining light area has value 0.1.

0.5

0.1

(b) The cluster tree of this graphon. The
two leftmost blocks join at a height of 0.5.
These join with the remaining block at 0.1.

(c) An adjacency matrix sampled from the
graphon, rearranged for the presentation (the
algorithm receives a random permutation of
this matrix.

(d) The smoothed estimate of edge probabil-
ities computed from the adjacency matrix at
left.

Figure 3.12: The neighborhood smoothing step as applied to a synthetic network.
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(a) The result of applying Algorithm 1 to the synthetic network generated from a graphon.

(b) The result of a simple, inconsistent clustering algorithm which applies single-linkage to the
pairwise distances between the columns of the adjacency matrix.

Figure 3.13: Neighborhood smoothing compared to naïve single-linkage clustering.

in the sense described earlier.
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Chapter 4

Conclusion

This dissertation has studied clustering under a statistical lens by assuming that the data

come from an underlying generative model. In both the density and graphon models, we

have identified the ideal hierarchical cluster structure of the distribution, defined a rigorous

notion of convergence in merge distortion, and analyzed algorithms which converge. Our

results are stronger than those which existed previously, and in the graphon setting provide

a theory of clustering where little existed.

But the statistical approach to clustering is not the only one. As discussed in Chapter 1,

there are numerous ways to formalize the goal of clustering, including framing it as an

optimization problem or axiomatizing the behavior of algorithms. Which approach is best

depends on the particular application, and arguably the most popular clustering method in

use – k-means – makes no statistical assumptions about the source of the data.

Nevertheless, we may still ask statistical questions of clustering algorithms which are

framed under a different paradigm. For example, suppose we apply an optimization-based

clustering algorithm to points sampled from a density. What aspects of the density cluster

tree does the optimal clustering recover? In general, such questions are difficult to answer

except in rather simple settings, but some results are known, such that that of Chaudhuri

et al. (2009) for k-means. Moreover, common cost functions for clustering are often NP-

Hard to optimize, and we sometimes do not even have satisfactory convergence guarantees

for approximation algorithms. Studying such algorithms under a statistical lens opens up

the possibility that the optimization problem (or its analysis) becomes easier when the data
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is generated from a distribution satisfying certain regularity conditions. As it stands, there

is much work to be done in order to answer such fundamental questions.

At a higher level, framing clustering as, for example, an optimization problem is neces-

sary because clustering is an unsupervised learning task, and so the correct clustering is ill

defined. As a result, we must inject assumptions into clustering algorithms such that each

has its own internal idea of what the correct clustering should be. It is then up to the data

analyst to choose the algorithm whose assumptions match their own goals in clustering. A

major reason for developing the sort of correctness results which appear in this disserta-

tion is to provide the analyst with a better understanding of the capabilities of clustering

algorithms which make statistical assumptions about the source of the data.

In a sense, the selection of a clustering algorithm and its parameters should be viewed

as prescribing a particular a ground truth clustering without assigning a label to every data

point. Unfortunately, this process is often rather opaque. Suppose, for instance, that a

data analyst has decided that optimizing the k-means objective is the correct approach to

clustering in their application. There still remains the problem of choosing the number of

clusters k. In order to do so, the analyst will typically run the algorithm for several choices

of the parameter and choose the output which looks reasonable.

Implicit in this procedure is the fact that the analyst has an internal idea of what

a reasonable clustering looks like. Ideally, such a clustering is eventually produced by

interacting with the algorithm through a parameter search. On the other hand, we may

design clustering algorithms which explicitly incorporate interaction with the user in order

to produce a reasonable clustering. For example, the algorithm may ask the user a limited

number of questions, such as whether two objects should be clustered together or separated.

In addition, human interaction can be much richer than the simple labeling of points; for

instance, the analyst may provide a reason for why two objects should belong to the same

cluster. Such interactive clustering is of growing interest in the literature; see, for example

(Awasthi et al., 2013; Awasthi and Zadeh, 2010; Balcan and Blum, 2008). Nevertheless,
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much work remains to be done in this direction, and many questions remain open.

The role of clustering will only grow as datasets increase in number and size; It is

therefore important that our understanding of it grows correspondingly. This dissertation

has provided correctness results for clustering algorithms, but has perhaps more importantly

introduced new tools for discussing the convergence of clustering methods. The notion of

clustering consistently developed in this work has the potential to be used in theories to

come, and will hopefully play a role in improving our knowledge of this important class of

algorithms.
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