DSC 10 Reference Sheet

Below, df is a DataFrame, ser is a Series, babypandas has been imported as bpd, and numpy has been imported as np.

Building and Organizing DataFrames

Each function/method below creates a new dataframe.

bpd.DataFrame()
Creates empty DataFrame.

bpd.read_csv(path_to_file)
Creates a DataFrame by reading from a CSV file.

df.assign(Name_of_Column=column_data)
Adds/replaces a column.

df.drop(columns=column_name)
Drops a single column.

df.drop(columns=[col_1_name, ..., col_k_name])
Drops every column in a list of column names.

df.set_index(column_name)
Move the column to the index.

df.reset_index()
Move the index to a column.

df.sort_values(by=column_name)
Sort the entire DataFrame in ascending order by the values in a
column.

df.sort_values(by=column_name, ascending=False)
Sort the entire DataFrame in descending order.

left.merge(right, left_on=1left_column, right_on=right_column)
Perform a join between the tables left and right.

left.merge(right, left_index=True, right_on=right_column)
Perform a join using left’s index instead of a column. Can also be
done with right_index=True.

Retrieving Information

df.shapel[o] and df.shape[1]
The number of rows and the number of columns, respectively.

df.get(column_name)
Retrieve column. Returns a Series.

df.get([col_a_name, ..., col_k_name])
Retrieve several columns. Returns a DataFrame.

ser.loc[label]
Retrieve an element by the row label.

ser.iloc[position]
Retrieve an element by its integer position.

df.index[position]
Retrieve the element in the index by its integer position.

df.take([position_1, ..., position_k])
Select several rows using by integer position.

df[bool_arr]
Select rows using a Boolean array. Returns a DataFrame. See:
Boolean Indexing.

Series Methods

Series have the following methods; each returns a single number:

.count(), .max(), .min(), .sum(), .mean(), .median()

Applying
df.get(column_name).apply(function_name) applies a function to ev-

ery entry in the column; returns a Series of the same size containing the
results.

Plotting

df.plot(kind=kind, x=col_x, y=col_y)
Draw a plot. kind may be 'scatter', 'line’', 'bar', or 'barh’
(for a horizontal bar chart. If x is omitted, the index is used.

df.get(col_name).plot(kind="hist', bins=n_bins, density=True)
Plot a density histogram of the data in the given column. n_bins
can be a number of bins, or a sequence specifying bin locations
and widths.

Boolean Indexing

Select a subset of a DataFrame's rows by constructing a Boolean

array condition with a likewise number of rows. The expression
df[condition] results in a DataFrame containing only those rows whose
corresponding element in condition is True. Boolean arrays are eas-
ily constructed by comparing an array/index/Series to a value using the
comparison operators: >, <, ==, <=, >=, =,

bool_arr_ia & bool_arr_2
Combine two Boolean arrays into one by “and”-ing them.

df[df.get(column_name) > 42]
Retrieve all rows for which the given column is bigger than 42.

df[(df.get(col_1) > 42) & (df.get(col_2) < 100]
Retrieve all rows for which the given column is between 42 and
100. Parenthesis are important!

df[df.get(column_name).str.contains(pattern)]
Retrieve all rows for which the given column contains the string
pattern.

df[df.index > 2]
Retrieve all rows for which the index is greater than 2.

df[df.index.str.contains(pattern)]
Retrieve all rows for which the index contains the string pattern.

Writing Functions

A custom functions is written as follows:

def function_name(argument_1, ..., argument_k):

<function body>
For example, this function squares a number:

def square_a_number(number):
return number##*2

Grouping

Use df.groupby(column_name), followed by one of these aggregation
functions:

.mean(), .median(), .count(), .max(), .min(), .sum(), .std()

The result is a new table whose index contains the group names. Only
those columns whose data type permits the selected aggregation method
are kept - for instance, ‘sum()* will drop columns containing strings.

df.groupby([col_1_name, ..., col_k_name]) creates subgroups,
first grouping by col_1_name, then, within each group, grouping by
col_2_name, and so on. It is recommended that you follow a subgroup-
ing .groupby() with .reset_index().




NumPy

arr[index]
Get the element at position index in the array arr. The first
element is arr[o].

np.append(arr, value)
A copy of arr with value appended to the end.

np.count_nonzero(arr)
Returns the number of non-zero entries in an array. True counts
as one, False counts as zero.

np.arange(start, stop, step)
An array of numbers starting with start, increasing/decreasing in
increments of step, and stopping before (excluding) stop. If start
or step are omitted, the default values are 0 and 1, respectively.

np.percentile(array, p)
Compute the pth percentile of the numbers in array. Example:
np.percentile(array, 95) computes the 95th percentile.

np.append(array, x)
Return a new array which has x appended to the end of array.

for-loops

for <loop variable> in <sequence>:
<loop body>

Performs the loop body for every element of the sequence. For example,
to print the squares of the first 10 numbers:

for i in np.arange(10):
print(ix=*2)

if-statements and Booleans
Conditionally execute code. The elif and else blocks are optional.

if <condition>:
<if body>

elif <second_condition>:
<elif body>

elif <third_condition>:
<elif body>

else:
<else body>

A Boolean variable is either True or False. Booleans can be combined
with and and or.

Comparisons result in Boolean variables. Comparisons can be performed
with the operators: == (equality), ! = (inequality), <, >, <=, >=.

Random Sampling

np.random.choice(array)
Return an element from the array at random.

np.random.choice(array, n)
Return n elements from the array at random, with replacement.

np.random.choice(array, n, replace=False)
Return n elements from the array at random, without replacement.

np.random.multinomial(n, [p_1, ..., p_k])
Return an array of length n in which each element contains the
number of occurrences of an event, where the probability of the
ith event is p_i. For instance, if an M&M is red with probability 0.2,
green with probability 0.5, and brown with probability 0.3, then a
random selection of 100 M&Ms is given by:

np.random.multinomial(1ee, [e.2, 0.5, 0.3]).

The result is a random count of each color. For instance, it might
be [22, 45, 33].

np.random.permutation(array_or_series)
Return a new array by randomly shuffling the input.

table.sample(n)
Return a new table by randomly sampling n rows from table,
without replacement.

table.sample(n, replace=True)
Return a new table by randomly sampling n rows from table, with
replacement.

Statistics and Hypothesis Testing

A sample is a subset of a population. A statistic is a number computed
using the sample. The field of statistics is about using a sample to say
something about the population.

A experiment is a process whose outcome is random; for example, flip-
ping a 100 coins. An observed statistic is a statistic computed from the
outcome of an experiment; for example, the number of Heads observed.
A model is a set of assumptions about how the data was generated. For
example: the result of a coin flip is equally-likely to be Heads or Tails.
Hypothesis testing is the process of testing a model for validity.

To perform a hypothesis test, we first establish a null hypothesis: this is
a precise assumption about how the data was generated. For instance:
the coin is fair. The alternative hypothesis is the opposite of the null hy-
pothesis. In our example, the alternative hypothesis is that the coin is
not fair.

To test the hypothesis, we compute the probability of seeing an outcome
at least as extreme as the observed statistic under the assumptions of
the null hypothesis; this is called the p-value. In practice, we do this by
simulating a bunch of outcomes using the null hypothesis and counting
how many times the outcome is more extreme than what was originally
observed.

The Bootstrap

When we compute a statistic from a sample, such as the median salary of
San Diego city employees, we should remember that the sample is ran-
dom. Therefore, the result could have been different. The Bootstrap al-
lows us to answer: “how different could it have been?” by giving us an
approximation of the distribution of the sample statistic.

Suppose salaries contains a column called “Salary” containing the
salary of each employee in a sample. The observed median salary is:

observed = salaries.get('Salary').median()

To make a 95% confidence interval for the median salary, we run the
bootstrap by re-sampling our data with replacement, over and over again:

boot_medians = np.array([])
for i in np.arange(5000):
# 1. re-sample the data
boot_salaries = salaries.sample(
salaries.shapel[o], replace=True

)

# 2. compute the statistic on the bootstrap sample
boot_median = boot_salaries.get('Salary').median()

# 3. save the result
boot_medians = np.append(boot_medians, boot_median)

The endpoints of the 95% confidence interval are:

left = np.percentile(boot_medians, 2.5)
right = np.percentile(boot_medians, 97.5)




Permutation Testing

We use a permutation test to determine if two groups were drawn from
the same population. For instance, suppose we give two versions of the

exam, A and B. We gather the results in a table scores with two columns:

“Version” and “Score”, containing the version and score for each exam
taken. We notice that the score on version A was typically higher. We can
test whether A was indeed significantly harder than B by using a permu-
tation test.

First, we decide on a test statistic, such as difference between the mean
score in each group. If we care only about whether the exams were dif-
ferent, we use an unsigned statistic, such as the absolute difference.

If we care whether A was harder, we use a signed statistic, such as the
signed difference:

def difference_in_means(scores):
means = scores.groupby('Version').mean()
return (
means.get('Score').loc['A"]
means.get('Score').loc['B']

)
Then, to run a permutation test with 5000 iterations:

statistics = np.array([])
for i in np.arange(5000):
# 1. shuffle the versions
shuffled = scores.assign(
Version=np.random.permutation(
scores.get(”Version”)
)
)

# 2. compute the test statistic
statistic = difference_in_means(shuffled)

# 3. save the result
statistics = np.append(statistics, statistic)

We then compute the observed test statistic, which in this case is the dif-
ference in mean between the two versions:

observed = difference_in_means(scores)
To compute the p-value, we use np.count_nonzero:

p_value = np.count_nonzero(statistics > actual) / 5000

Spread of a Distribution
The standard deviation of a collection of numbers z1,...,z, is

\/l($1+x2++$n)

n

Chebyshev's Theorem: at most 1 —1/22 of the data is within z STDs of the
mean.

Range All Distributions  Normal Distribution

about 68%
about 95%
about 99.73%

at least 0%
at least 75%
at least 88.8%

mean +1 STD
mean +2 STDs
mean +3 STDs

The Standard Normal Curve
The standard normal curve has mean 0, standard deviation 1.

To compute the area under the standard normal curve from —oo to z, use
scipy.stats.norm.cdf(z)

z must be in standard units.

To compute the area under the standard normal curve between z3 and z1,
where 21 < za:

scipy.stats.norm.cdf(z_2) - scipy.stats.norm.cdf(z_1)

Standard Units, Correlation, Regression

Given a collection of numbers z1, ..., zn, the representation of z; in
standard units is
xr; — mean
2= ——
STD

If x is an array of numbers, we can convert each number to standard
units with the code: x_su = (x - np.mean(x))/np.std(x)

If x and y are two arrays of the same size, and x_su and y_su are the
arrays after converting to standard units, then the correlation coefficient
isr=(x_su+*y_su).mean()

In standard units, the slope m of the regression line is r (the correlation
coefficient) and the intercept is 0.

In original units, the slope m and intercept b of the regression line are:
SD of y

"SDofg
b = (mean of y) — m - (mean of z)

m=r

The Central Limit Theorem

The sample is random. So the sample mean is too.
Since it is random, the sample mean has a distribution.

We could get this distribution using the bootstrap, but there is a better
way:

The CLT: “the distribution of the sample mean is approximately normal, no
matter the distribution of the population.”

The mean of the distribution is the population mean.
The STD of the distribution is

population STD

y/sample size

The population mean and the population STD can be replaced with the
sample mean and sample STD without much loss in accuracy.

To make a 95% confidence interval for the sample mean:

sample std sample std
sample mean — 2 X ——————, sample mean + 2 X ——,
y/sample size v/sample size

For all of this to work, the sample has to be randomly drawn with
replacement.




